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Supplementary Note 1. DREAM5 challenge evaluation criteria 

For the initial DREAM5 challenge, we used a different set of evaluation criteria.  Three of the 

criteria measured the average similarity of the predicted probe intensities (i.e. scanner 

measurements) to the actual intensities for each experiment, where similarity was measured 

using (i) the Pearson correlation of the raw probe intensities, (ii) the Pearson correlation of the 

log values of the intensities, or the (iii) Spearman rank correlation of the probe intensities.  The 

other two criteria first transformed predicted probe intensities for each experiment into 8-mer 

intensities by calculating the median predicted intensity of all 32,896 8 base sequences on the 

array.  All 8-mers were then ranked by their median predicted intensity, and (iv) the area under 

the receiver operating characteristic curve (AUROC) or the (v) the area under the precision-

recall curve (AUPR) was calculated using high-scoring 8-mers as positives.  We defined high-

scoring 8-mers as those with “E-scores” (Berger et al. 2006) (modified AUC values, which score 

how well the presence of an 8-mer within a probe sequence predicts the ranking of the probe 

intensity) exceeding 0.45.  It was previously established that E = 0.45 can be used as a cutoff 

for high-confidence in binding of a TF to the given 8-mer (Berger et al. 2008).  Since the E-

scores for each 8-mer are also derived on the basis of the intensity of the probes they reside on 

(Berger et al. 2006), this last criterion is essentially a measurement of consistency with the E-

score. 

 

We calculated a single score for each of the five evaluation criteria for each team by averaging 

across all 66 experiments.  A final team score was then calculated by ranking all teams within 

each criterion and calculating the average rank across all five criteria.  This final score is slightly 

biased towards probe-based evaluations, since three criteria are based on probes, and only two 

are based on 8-mers.   
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Supplementary Note 2. 35-mer vs 8-mer scoring 

Previous analyses of PBM data have largely focused on 8-mer E-scores or Z-scores (or motifs 

derived from these scores), which have the potential to remove noise, because E- and Z-scores 

are calculated using the intensity of all 32 probes that contain the 8-mer (16 for palindromes) 

(Badis et al. 2009; Berger et al. 2006; Berger et al. 2008).  8-mer scores are highly reproducible, 

the individual sequences almost invariably resemble motifs derived from the same data, and in 

several cases we have examined show good correspondence with established Kd 

measurements (Badis et al. 2009; Berger et al. 2008).  However, they may not fully describe the 

DNA-binding preferences, e.g. if the binding site is longer than 8 bases.  In addition, as argued 

by Zhao and Stormo (Zhao and Stormo 2011) the transformation from 35-mer to 8-mer profiles 

can introduce bias: in particular, scores for low-binding 8-mers can be inflated if they partially 

overlap high-binding 8-mers.  To clarify whether the 8-mer or 35-mer scores are a better 

measure of intrinsic sequence preference, we initially asked whether the 8-mer Z-scores or the 

PWM scores derived from 35-mers were more accurate at predicting Kd measurements from 

independent data sets in which measurements were derived from MITOMI (Maerkl and Quake 

2007; Fordyce et al. 2010) or alternative PBM systems (Siggers et al. 2011).  Results from 

these analyses were inconclusive, partly due to the available data being limited 

(Supplementary Note 2 Table 1). 

 

Another line of evidence indicates that scoring 35-mers provides a more accurate picture of TF 

sequence specificity, at least as an intermediate step in the scoring procedure.  In a previous 

analysis, we scored 8-mers directly with PWMs in order to gauge how well they fit the PBM 

data, comparing the PWM scores to the 8-mer Z-scores using Pearson correlation (Badis et al. 

2009).  Using this procedure, we observed that a single PWM learned from a training PBM 

generally yields a lower correlation to 8-mer Z-scores from a test PBM as well as 8-mer Z-
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scores from the same training PBM, and concluded that PWMs often do not completely capture 

sequence specificity of TFs (Badis et al. 2009).  Zhao and Stormo (Zhao and Stormo 2011) 

contested this conclusion, claiming that a superior motif discovery tool, BEEML-PBM, is better 

suited to the task than the tools we used.  But, Zhao and Stormo also introduced a new scoring 

procedure:  on the test data, they first scored 35-mers, and then calculated 8-mer Z-scores.  We 

tested this scoring system, and found that it results in dramatically improved correlations to the 

measured test 8-mer Z-scores.  In fact, on the new 66 TF data set, motifs produced by BEEML-

PBM and scored using this system outperform the 8-mer Z-scores (Supplementary Note 2 

Figure 1a).  Even the 8-mer Z-scores from the training data yield higher correlations if the test 

data is first scored as 35-mers, and then converted to 8-mers (Supplementary Note 2 Figure 

1b).  Thus, whether the test criteria involve scoring 35-mers or 8-mers, both PWMs and k-mer 

models benefit from first scoring the 35-mers.  This finding suggests that our previous 

conclusions regarding secondary motifs should be revisited (see main text).  We also observed 

that, using this procedure, the correlations obtained for 8-mers and for 35-mers on the same 

array scale with each other almost perfectly, whether the 35-mers are scored with PWMs or with 

8-mers (Supplementary Note 2 Figure 2).  The only significant difference we have observed 

between scoring 35-mers or 8-mers is that “secondary motifs” appear to confer a slight 

advantage when scoring 8-mers, but not 35-mers (see main text).    
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35m 35m 35m 35m 8m 8m 8m 8m 

TF Data type PMID PA BEEML FR Zscores PA BEEML FR Zscores 

Ace2 MITOMI 20802496 0.783 0.203 0.032 0.644 0.827 0.221 0.031 0.682 

Aft1 MITOMI 20802496 0.232 0.039 0.241 0.194 0.327 0.034 0.285 0.230 

Aft2 MITOMI 20802496 0.727 0.782 0.639 0.495 0.762 0.821 0.692 0.500 

Atf4 160K PBM (vinson) 0.084 0.159 0.536 0.207 0.134 0.072 0.557 0.439 

Bas1 MITOMI 20802496 0.546 0.059 0.308 0.102 0.583 0.080 0.356 0.131 

Cbf1 MITOMI 20802496 0.498 0.303 0.754 0.712 0.505 0.306 0.793 0.750 

Cbf1 MITOMI 17218526 0.459 0.460 0.045 0.851 0.419 0.420 0.033 0.842 

Cbf1 PBMs (vc) 22146299 0.359 0.383 0.138 0.641 0.339 0.366 0.182 0.673 

Cebpb 160K PBM (vinson) 0.543 0.838 NaN 0.538 0.354 0.482 NaN 0.445 

Cin5 MITOMI 20802496 0.254 0.884 0.857 0.433 0.271 0.894 0.874 0.446 

Cup9 MITOMI 20802496 0.200 0.276 0.298 0.211 0.232 0.324 0.346 0.233 

Dal80 MITOMI 20802496 0.164 0.081 0.228 0.251 0.180 0.125 0.262 0.271 

Gat1 MITOMI 20802496 0.331 0.655 0.636 0.606 0.373 0.726 0.704 0.657 

Gcn4 MITOMI 20802496 0.509 0.754 0.734 0.488 0.511 0.760 0.742 0.484 

Max MITOMI 17218526 0.589 0.627 0.557 0.862 0.508 0.550 0.623 0.860 

Mcm1 MITOMI 20802496 0.006 0.170 0.227 0.296 0.004 0.277 0.257 0.337 

Met31 MITOMI 20802496 0.345 0.052 0.069 0.497 0.391 0.056 0.076 0.519 

Met32 MITOMI 20802496 0.420 0.597 0.573 0.377 0.468 0.646 0.609 0.368 

Met32 PBMs (vc) 22146299 0.262 0.341 0.246 0.416 0.253 0.332 0.245 0.429 

Msn2 MITOMI 20802496 0.424 0.367 0.356 0.677 0.496 0.422 0.411 0.729 

Pho4 MITOMI 20802496 0.733 0.792 0.711 0.591 0.802 0.827 0.749 0.621 

Pho4 MITOMI 17218526 0.987 0.927 0.132 0.717 0.984 0.909 0.115 0.669 

Reb1 MITOMI 20802496 0.574 0.000 0.003 0.026 0.588 0.027 0.003 0.082 

Rox1 MITOMI 20802496 0.626 0.652 0.401 0.591 0.682 0.702 0.426 0.619 

Stb5 MITOMI 20802496 0.639 0.727 0.048 0.396 0.694 0.785 0.069 0.431 

Yap1 MITOMI 20802496 0.405 0.361 0.476 0.250 0.414 0.377 0.494 0.264 

Yap3 MITOMI 20802496 0.410 0.032 0.003 0.233 0.426 0.079 0.003 0.230 

Average 

 
0.448 0.427 0.356 0.456 0.464 0.430 0.382 0.479 

 

Supplementary Note 2 Table 1. 8-mer and 35-mer based scoring on other data sets  
Each entry gives the correlation between the scores produced by a different data source and 8-
mers produced by PBM-derived PWMs (using the PWM_align, BEEML-PBM, or 
FeatureREDUCE algorithms) or PBM-derived 8-mer Z-scores.  For the columns labeled "35m", 
the sequences assayed in the corresponding other data type were scored by summing the 
PWM scores or Z-scores across the entire sequence.  The correlation was then calculated 
between the resulting scores and the score produced by the different data source.  For the 
columns labeled "8m", the scores resulting from the full sequence scans were converted to 
median 8-mer scores, and the correlation was calculated between the resulting 8-mers.  The 
best scoring method is indicated in yellow for each experiment.  'NaN' indicates that the given 
algorithm did not produce a PWM for the given experiment.  The average performance across 
all experiments is indicated at the bottom for each algorithm.  Abbreviations: PBMs (vc), PBMs 
using varying protein concentrations.  MITOMI, Mechanically induced trapping of molecular 
interactions; (vinson), unpublished PBM data from the lab of Chuck Vinson (manuscript in prep).  
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Supplementary Note 2 Figure 1.  Evaluation of Zhao and Stormo’s 8-mer scoring system 
Comparison of the accuracy of Zhao and Stormo’s 8-mer scoring scheme predictions and test 
array Z-scores.  a. Correlation across all 8-mers between the test array Z-scores and (1) 
BEEML-PBM’s probe predictions, converted to 8-mer median intensities (X axis) and (2) the 
training array Z-scores (Y axis).  b. Correlation across all 8-mers between the test array Z-
scores and (1) the training array Z-scores summed across each probe sequence, converted to 
8-mer median intensities (X axis) and (2) the training array Z-scores (Y axis). 

b a 
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Supplementary Note 2 Figure 2. Comparison of 8- mer correlation scoring to probe 
correlation scoring 
We evaluated each of the algorithms by calculating the mean correlation of probes or 8-mers 
across all 66 TFs.  For the probe-based evaluation, we calculated the Pearson correlation 
between the predicted probe intensities and the test intensities.  For the 8-mer-based 
calculation, we converted the predicted and test probe intensities to median 8-mer intensities, 
and then calculated the Pearson correlation across all 32,896 8-mers.  The final probe (Y axis) 
and 8-mer-based correlation (X axis) for each algorithm is plotted. 
  



9 
 

Supplementary Note 3. Effect of array data pre-processing 

steps on algorithms 

For all published algorithms and the three algorithms that finished in the top four in the DREAM 

challenge that take less than 24 CPU hours to run per experiment, we determined the effect on 

performance of a panel of nine commonly used microarray pre-processing steps (see 

Supplemental Note 3 Methods).  Using our final evaluation criteria, we compared the scores of 

the predictions produced by each algorithm when given input data with and without each pre-

processing step.  We found that spatial detrending invariably improves performance, regardless 

of algorithm (Supplementary Note 3 Figure 1).  Other pre-processing steps improve some 

algorithms, while decreasing the performance of others.  For example, quantile normalization 

substantially improves the performance of MatrixREDUCE and Team_E, but adversely affects 

the performance of Seed-and-Wobble and PWM_align.  We found that most algorithms are 

robust to the presence of bad spots on the arrays, as only RankMotif++ and MatrixREDUCE 

displayed substantially increased performance when removing manually flagged spots from the 

training data set (Supplementary Note 3 Figure 1). 

 

For each algorithm, we used the combination of pre-processing steps that resulted in the best 

final score to produce a final pre-processed data set specific to the given algorithm (see 

Supplemental Note 3 Methods).  The degree to which data pre-processing improves algorithm 

performance varies substantially.  Although all algorithms show increased performance when 

using their respective pre-processed data as input, score improvements ranged from 0.013 

(8mer_pos) to 0.076 (MatrixREDUCE) (Supplementary Note 3 Figure 1).  The average 

improvement across all 12 algorithms was 0.03, a difference nearly as great as that separating 

the final scores of the top four algorithms (see Table 2).  Given the fact that many algorithms 

performed similarly to each other in the final evaluations, the inclusion of relevant data pre-
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processing steps appears to be an important consideration when developing and implementing 

an algorithm.   

 

Supplementary Note 3 Methods 

 

Evaluated data pre-processing methods  

We evaluated the effect of a panel of nine data pre-processing methods on the final 

performance of each algorithm.  For each pre-processing method, we compared the final score 

achieved by the given algorithm upon performing pre-processing to the final score when 

performing no pre-processing.  Each algorithm was trained on training array data created using 

the given pre-processing method, and tested on test array data pre-processed with the same 

pre-processing method. 

 

Inclusion of linker sequence (Include linker) 

Each probe sequence has a 35 base unique sequence, and a 25 base non-unique primer 

sequence.  It is possible that a TF might bind specifically to a portion of the non-unique 

sequence.  To gauge the effect of allowing for this possibility on each algorithm, we created a 

dataset that includes the first five bases of the probe linker sequence (and hence is 40 bases 

long, instead of only including the 35 unique bases). 

 

Removal of bad array spots (No bad spots) 

A well-documented artifact of microarray data analysis is that some probes will inevitably be 

unusable for a variety of reasons, including smudges on the slide, edge effects, or scratches on 

the surface.  To correct for these effects, we created a dataset that does not include any probe 

whose spot was manually flagged as either bad or suspect.  The minimum number of bad spots 

on an array was 25, with a maximum of 3044 and a mean of 678 (out of ~40,000 total probes). 
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Removal of low intensity probes (No low intensity) 

Extremely low intensity probes are often caused by artifacts such as edge effects.  To correct 

for this effect, this pre-processing dataset discards all probes with extreme low intensities using 

a threshold derived from the probe intensity histogram.  We calculated the threshold by taking 

the mode intensity of the histogram, and then moving toward lower intensity bins until f (k) < 

0:005 f (m), where f (k) is the frequency in bin k, and f (m) is the frequency at the mode. 

 

Use of median instead of mean pixel intensity (Use median) 

Most available algorithms use the mean pixel intensity of a probe as its score.  As an 

alternative, this dataset instead provides the median pixel intensity. 

 

Subtraction of background pixel intensity (Minus background) 

Microarray spot pixel intensities might be influenced by factors other than hybridization of TFs to 

probes, including dust particles and stray fluorescent molecules.  Such local background pixel 

intensities are often quantified by calculating the mean pixel intensity around (outside of) each 

spot.  This dataset corrects for background effects by subtracting the mean local background 

pixel intensity from the mean pixel intensity of the probe. 

 

Normalization by median probe intensity (Norm by median) 

It is possible that the overall intensity of a probe might be influenced by its sequence, or by its 

physical location on the array.  To address these possibilities, we created two datasets that 

account for the expected intensity of a probe.  Expected intensities were determined by first 

calculating for each probe its median intensity rank across all 66 experiments.  The expected 

intensity of a given probe in a given experiment was then estimated as the intensity of the probe 

with the associated rank in the given experiment.  This procedure accounts for the fact that the 
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distribution of the probe intensities varies across experiments.  For each probe in each 

experiment, we then either divide or subtract its actual intensity by its expected intensity.  

Normalized intensities less than 0 were set to 1. 

 

Quantile normalization 

Quantile normalization is a common practice in microarray data pre-processing, and is often 

used to help account for the fact that systematic variations at low intensities can differ from 

variations seen at medium and high intensities.  This procedure forces one distribution (the 

probe intensities of a given experiment) to fit another distribution (here, a consensus distribution 

of the probe intensities across all 66 experiments).  Hence, for a given experiment, the probe 

with the highest value will assume the value of the brightest probe in the consensus distribution, 

the 2nd brightest will receive the 2nd higher score, and so on. 

 

Spatial detrending 

Spatial detrending accounts for the non-uniform distribution of probe intensities that is often 

observed across a microarray slide.  For example, it is common for certain regions of the array 

to be darker or lighter than other regions, due to unwanted effects such as smudges or 

fingerprints.  Spatial detrending accounts for such effects by rescaling the intensity of each spot 

by the ratio of the global median and the median calculated within an N x N window centered on 

the spot. Here, we tried windows of varying sizes by setting N equal to 5, 7, 9, or 12. 

 

Creation of a final pre-processed dataset for each algorithm 

For each algorithm, we sought to determine the single dataset whose pre-processing steps 

resulted in the best performance (measured as the final score achieved by the algorithm, as 

described above).  In theory, the combination of pre-processing steps that individually improved 

the performance of a given algorithm should result in the best performance when combined into 
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a single pre-processed dataset.  In practice, we found that certain pre-processing steps 

negatively affected other pre-processing steps when used in combination, and that different 

results were obtained depending on the order that some pre-processing steps were performed.  

To circumvent these issues, we adopted a greedy method where for each algorithm, we first 

chose the pre-processing method that resulted in the largest increase in performance, 

performed that method on the data, and subsequently performed the 2nd best method.  At each 

step, we evaluated the final score of the algorithm, removing any pre-processing step that 

resulted in a loss of performance.  This procedure was iteratively repeated until all pre-

processing steps were tested that individually resulted in an increase in performance for the 

given algorithm.  Certain pre-processing steps that are highly related (e.g. spatial detrending 

with window length of 7 vs. 9) were not permitted to both be used for a given dataset- in such 

cases, the single pre-processing method amongst the related ones was chosen that individually 

resulted in the largest increase in performance.  In all cases, the final combination of pre-

processing steps resulted in a higher final score than any of the individual pre-processing steps 

used on its own (Supplementary Note 3 Figure 1). 
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Supplementary Note 3 Figure 1.  Effect of array data pre-processing steps on algorithm 

performance 

The final performance of each algorithm was determined when using one of nine microarray 

data pre-processing steps, and compared to the final performance when using non-processed 

data.  Shown here is the difference between these two values for each pre-processing step, for 

each algorithm.   For “Spatial Detrend”, the results for the best-performing window size are used 

for each algorithm (see Online Methods). The scale for all plots ranges from +0.10 to -0.10.  A 

score of +0.10 indicates that the given pre-processing step improves the final score of the given 

algorithm from e.g 0.60 to 0.70.  The plot labeled “Best” shows the performance of the best 

combination of pre-processing steps for the given algorithm.  Pre-processing steps are sorted in 

decreasing order of mean improvement across all algorithms.  Algorithm key is indicated at the 

right. 
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Supplementary Note 4. Examination of the relative difficulty 

of each TF for each algorithm. 

Overall, there was high variability in the final scores of the various algorithms across the 66 TFs 

we analyzed.  We therefore conducted a series of analyses aiming to assess which TF 

sequence specificities were hardest to model, and to understand what made them challenging.  

First, we re-clustered Figure 2 so that TFs with related DNA binding domain sequences are 

near each other (Supplementary Note 4 Figure 1).  The results of this analysis did not indicate 

any clear tendency for TFs from certain structural classes to be harder to model than others. 

 

As an alternative approach, we next devised a scoring method to quantify the relative difficulty 

for an algorithm to accurately capture a TF’s binding preferences.  We calculated a single score 

for each TF/algorithm pair that we refer to as the relative prediction accuracy (RPA).  RPAs take 

the difference in quality of the predictions of the various algorithms into account by performing a 

Z transformation of each TF’s final evaluation scores such that they are relative to each 

algorithm, and hence can be interpreted as how well the given algorithm performed for a given 

TF, relative to the other TFs (see Supplementary Note 4 Methods).   A higher RPA value thus 

indicates that the given algorithm achieved a higher final score than its average final score 

across all TFs.   

 

We found that there are clearly certain TFs whose sequence preferences are harder (or easier) 

to predict than others, regardless of the algorithm or type of model used (Supplementary Note 

4 Figure 2, panel a).  For most TFs, at least one algorithm has a positive RPA, indicating that at 

least one algorithm performs better than its average for most TFs.  Likewise, the minimum RPA 

is less than zero for most TFs (Supplementary Note 4 Figure 2, panel b), indicating that most 

TFs are a challenge to predict for at least one algorithm.     
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A major factor in the overall ease of predicting probe intensities for a given TF appears to be the 

quality of the underlying experimental data: if there are a large number of high-scoring 8-mers, 

and if there is a high correlation between the 8-mer transformed data from the two arrays, then 

the data is easier to model (Supplementary Note 4 Figure 2, panel c).  Indeed, the three TFs 

for which it is hardest to predict sequence preferences in the PBM data (the C2H2 proteins 

Zkscan5, Zfp3, and Zfp300) have only between one and three 8-mer E-scores exceeding 0.45 

in both their training and test data.  Such cases appear to be particularly difficult for regression-

based algorithms such as BEEML-PBM and FeatureREDUCE, because they will only work if 

there is enough variation in the data to parameterize the model and thus fit a PWM properly.  

Although many of the hardest to model TFs are C2H2 zinc fingers, several non-C2H2 TFs, 

including Nhlh2, Sp140, Tbx1, and Atf4, present a similar modeling challenge due to their small 

number of strongly bound 8-mers, indicating that this phenomenon is not exclusive to the C2H2 

class.  Nor is it a general property of C2H2 zinc fingers:  when only considering C2H2 TFs with at 

least 10 8-mers with E-scores exceeding the 0.45 threshold, there is virtually no difference from 

the majority of other TFs (data not shown).  In summary, we do not find any clear tendency for 

specific families of TFs to be harder to model.  Instead, algorithm performance is largely 

dictated by properties of the underlying array data. 

 

 

Supplementary Note 4 Methods 

 

Calculation of Relative Prediction Accuracies (RPAs) 

We found that different algorithms performed better (or worse) on different subsets of TFs.  In 

order to quantify the difficulty a given algorithm had in accurately capturing a given TF’s binding 

preferences relative to the other TFs, we calculated a single score for each algorithm/TF pair 
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that we refer to as the relative prediction accuracy (RPA).  For a given evaluation scheme, the 

66 evaluation scores of an algorithm are first transformed into Z-scores (relative to their 

distribution across all 66 experiments).  The Z-scores are then summed up across all three 

evaluation schemes, yielding a final score for each TF/algorithm pair quantifying how much 

better the given algorithm performs on the given TF, relative to its performance on all of the 

other TFs. 
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Supplementary Note 4 Figure 1.  Algorithm performance, clustered by TF family 

Same data as in Figure 2, with the TFs clustered by DNA binding domain amino acid 

sequences. The tree was created using the ClustalW web server, with default settings. 
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Supplementary Note 4 Figure 2. Relative ease of modeling each transcription factor 

(a) Comparison of the relative performance of each algorithm on each TF.  Each entry depicts 

the relative performance accuracy (RPA) of the given algorithm/TF pair, which is essentially a Z 

transformation of an algorithm’s final score, relative to its final score on for al TFs.  TFs are 

sorted in decreasing order of their mean RPA, and hence the “easiest” TFs to predict are on the 

left.   (b) Summary statistics of RPA values across all algorithms. The mean, maximum, and 

minimum RPAs achieved by any algorithm.  (c) Potential causes of difficulty in TF modeling.  

Each value is Z-transformed as for the RPA values.  The Pearson correlation of each statistic 

with the RPA values is indicated on the right.  Key: Corr (E), correlation of 8-mer E-scores 

between experimental replicates; Corr (Z), correlation of 8-mer Z-scores between replicates; 
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Train E > 0.45, number of 8-mer E-scores exceeding 0.45 in the training data; Test E > 0.45, 

number of 8-mer E-scores exceeding 0.45 in the test data; Train Max Z, value of the highest Z-

score in the training data; Test Max Z, value of the highest Z-score in the test data; Non-

specific, performance of an algorithm that simply predicts the median intensity of the given 

probe across all 66 TFs. 
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Supplementary Note 5. Evaluation of sequence scanning 

methods using PWMs 

The results of our evaluations suggest that PWM-based algorithms perform well for the majority 

of TFs.  We therefore sought to understand what aspects of the high-performing BEEML-PBM 

algorithm caused it to yield higher scores than other PWM-based algorithms.  BEEML-PBM, 

FeatureREDUCE, and MatrixREDUCE learn their models in a biophysical energy-based 

framework (see Supplementary Note 8).  In addition to using an energy-based scoring system 

to sum PWM scores across probe sequences, BEEML-PBM utilizes three strategies in its 

scoring methodology: (1) it estimates a chemical potential parameter (µ) that corrects for effects 

of non-specific sequence binding (see Supplementary Note 8); (2) it corrects for motif 

positional effects within the probe sequence; and (3) it calculates the degree of binding to a 

probe sequence as the sum of binding probability at each possible binding site on the probe (i.e. 

only allowing a TF to “bind” to either the positive or negative strand at any given position).   

 

To evaluate possible methods for scoring sequences using a PWM, we compared the final 

results achieved by each PWM-based algorithm using a variety of PWM scoring schemes, 

including log odds and energy-based schemes, and methods incorporating BEEML-PBM’s three 

scoring strategies.  Mathematically, scoring a given sequence under an energy or log odds-

based framework results produces nearly identical results when ignoring the µ parameter 

(Supplementary Note 8).  Indeed, we found little to no difference between the final score of a 

PWM-based algorithm when using either a log odds or energy-based scoring approach 

(Supplementary Note 5 Table 1 - compare row labelled “Log Sum (sum)” to row labelled 

“Boltz”).  Further, we found that summing PWM scores across a probe sequence (as BEEML-

PBM normally does) produces more accurate predictions than taking the maximum PWM score 

(Supplementary Note 5 Table 1), in concordance with the fact that the 8mer_sum algorithm 
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outperformed the 8mer_max algorithm in our evaluations (Table 2).  We also found that, in 

general, the strategy of only allowing a TF to bind to one strand at a time had negligible effect 

on the performance of most algorithms (Supplementary Note 5 Table 1).  Likewise, little to no 

improvement was seen when BEEML-PBM’s position-specific effect was included in the probe 

scoring scheme (Supplementary Note 5 Table 1).   

 

In contrast, the incorporation of the effect of non-specific sequence binding (the µ parameter) 

results in a relatively large improvement of performance for the BEEML-PBM method, raising its 

final score from 0.889 to 0.914 (Supplementary Note 5 Table 1).  A similar improvement is not 

exhibited for most other algorithms, likely because the estimation of µ is dependent on the PWM 

parameters themselves, and hence the value of µ estimated by BEEML-PBM does not 

necessarily transfer to the PWMs produced by the other algorithms.  Interestingly, we found the 

greatest improvement in BEEML-PBM’s performance when the µ and position effects were 

included, but not the strand effect, suggesting that the various strategies employed by BEEML-

PBM have interdependent effects. 

 

 

Supplementary Note 5 Methods 

 

Comparison of methods for scanning sequences using PWMs 

Several scoring systems have been proposed for scoring a sequence using a PWM, including 

log-odds-based and energy-based scoring systems (see Supplementary Note 8).  Further, 

additional scoring schemes specific to PBMs are utilized by the BEEML-PBM method in order to 

produce its final probe intensity predictions (see Zhao et al. 2009 for full descriptions).  In order 

to directly compare the performance of the various scoring methods, we scored the final PWMs 

of each PWM-based method using each scoring scheme.  Scoring systems evaluated here 
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include the log-odds framework (either summing or taking the maximum score across the probe 

sequence), and the energy-based scoring system, using all possible combinations of the three 

scoring strategies utilized by BEEML-PBM.  For each algorithm/scoring system pair, the final 

score (as described above) is reported in Supplementary Note 5 Table 1. 

 

 

 
PWM1 PWM Score2 FR TM_E BML MR PWM (E) PWM SW RM 

Prob Log Sum (max) 0.827 0.806 0.856 0.762 0.834 0.822 0.719 0.677 

Prob Log Sum (sum) 0.858 0.855 0.888 0.842 0.843 0.827 0.723 0.694 

Energy Boltz 0.858 0.858 0.889 0.843 0.846 0.828 0.724 0.697 

Energy Boltz (str) 0.858 0.862 0.889 0.841 0.846 0.827 0.725 0.699 

Energy Boltz (pos) 0.861 0.861 0.890 0.848 0.838 0.838 0.729 0.705 

Energy Boltz (mu) 0.831 0.852 0.914 0.822 0.840 0.828 0.738 0.703 

Energy Boltz (str,pos) 0.861 0.860 0.895 0.845 0.837 0.838 0.730 0.701 

Energy Boltz (str,mu) 0.828 0.850 0.907 0.824 0.844 0.828 0.736 0.698 

Energy Boltz (pos,mu) 0.835 0.855 0.920 0.828 0.840 0.827 0.744 0.706 

Energy Boltz (str,pos,mu) 0.827 0.853 0.910 0.831 0.842 0.840 0.742 0.702 

 
Supplementary Note 5 Table 1. Comparison of PWM sequence scanning methods 
Comparison of the performance of various methods for scanning sequences using PWMs.  
Each entry represents the final score of the given algorithm when using the indicated PWM 
scoring scheme. The highest score achieved for each algorithm is highlighted. Abbreviations: 
Prob, probability or frequency matrix; Boltz, Boltzmann or energy matrix; str, strand-specific; mu, 
incorporates non sequence-specific µ parameter; pos, position-specific.  Algorithm 
abbreviations: FR, FeatureREDUCE; TM_E, Team_E; BML, BEEML-PBM; MR, 
MatrixREDUCE; PWM (E), PWM_align_E; PWM, PWM_align; SW, SeedAndWobble; RM, 
RankMotif++. 
 
1 Type of PWM used to model binding specificities.   
2 Scoring method used to score a probe subsequence with the given PWM 
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Supplementary Note 6.  Secondary motifs, by category 

We identified cases in where secondary motifs increase predictive performance, and grouped 

them into one of seven categories.  Here, we provide examples and discuss each category. 

 

Category 1. Minor variations on the primary motif (fine tuning) 

The majority of secondary motif improvements fall into this category.  In each case, the final 

score increases with the addition of a secondary motif (see “Impr” col) , but the primary and  

secondary motifs are nearly identical (see “r(P,S)” column, and logos). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 
Name TF_ID Study Alg. r(P,T)1 r(S,T)2 r(P+S,T)3 Impr4 r(P,S)5 

Nr4a2 TF_12 DREAM BEEML 0.437 0.624 0.648 0.212 0.855 

Snai1 TF_56 DREAM FR 0.868 0.885 0.917 0.048 0.818 

Rfx3 3961.1 Badis09 BEEML 0.693 0.707 0.747 0.054 0.755 

Hoxa3 2783.2 Badis09 FR 0.906 0.844 0.941 0.036 0.736 

Nr4a2 

Snai1 

Rfx3 

Hoxa3 

1

 Correlation between primary motif 8-mer predictions and test 8-mer scores 
2

 Correlation between secondary motif 8-mer predictions and test 8-mer scores 
3

 Correlation between combined (regressed) 8-mer predictions and test 8-mer scores 
4

 Improvement of combined predictions over primary predictions 
5 

Correlation between primary motif 8-mer score predictions and secondary motif 8-mer score predictions 
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Category 2. Variations in information content 

In this category, the primary motif has low information content, and the secondary motif is 

similar, but more information rich.  Due to the differing information content, the 8-mer score 

predictions of the two are not highly related (see “r(P,S) column”), but they do not represent  an 

example of a bona fide secondary motif, since the consensus sites of the motifs are related. 

 

 

 

 

 

 

Category 3. “Second chances” 

In some cases, the primary motif identified by the given algorithm was ineffective, but a “second 

chance” on the residual intensities produced an effective motif.  In such cases, there is a large 

improvement between the primary and secondary motif (see “Impr” col), but it is due to technical 

issues of the algorithm, and not the underlying biology. 

 

 

 

 

 

 

 

Name TF_ID Study Alg. r(P,T) r(S,T) r(P+S,T) Impr r(P,S) 

Tcf7 0950.2 Badis09 BEEML 0.825 0.430 0.834 0.009 0.374 

Sox1 2631.2 Badis09 FR 0.874 0.486 0.894 0.020 0.351 

 
 
 TF_ID Study Alg. r(P,T) r(S,T) r(P+S,T) Impr r(P,S) 

Zfp637 TF_61 DREAM BEEML -0.151 0.366 0.360 0.511 -0.059 

Gata4 TF_44 DREAM FR 0.528 0.858 0.844 0.316 0.360 

Tcf7 

Sox1 

Zfp637 

Gata4 
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Category 4. Half sites and dimers 

This category contains TFs that can bind DNA as homodimers.  In each case, one motif 

includes a single half site, and the other contains all or a portion of the other half site.  The 

portion of the half sites present in each motif are indicated on the right. 

Name TF_ID Study Alg. r(P,T) r(S,T) r(P+S,T) Impr r(P,S) 

Ar TF_1 DREAM BEEML 0.739 0. 493 0.746 0.006 0.547 

Atf3 TF_35 DREAM BEEML 0.655 0.536 0.676 0.021 0.577 

Gata3 1024.3 Badis09 FR 0.873 0.495 0.882 0.008 0.421 

Irf3 3985.1 Badis09 BEEML 0.615 0.635 0.661 0.046 0.788 

Ar 

Atf3 

Gata3 

Irf3 

P
1

: GGAACANNNTGTTCC 

S
2

: GGAACANNNTGTTCC 

P: TGACGTCA 

S: TGACGTCA 

P: TTATCWGATAA 
S: TTATCWGATAA 

P: TTTCNNTTTC 

S: TTTCNNTTTC 

1

Primary motif consensus sequence.  Half sites of full binding site are colored in red and blue.  
The portion of the full binding site included in the motif is underlined. 
2

Secondary motif, with underlining and coloring as for primary motif. 
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Category 4. Half sites and dimers (cont’d) 

   

Name TF_ID Study Alg. r(P,T) r(S,T) r(P+S,T) Impr r(P,S) 

Irf4 3476.1 Badis09 FR 0.807 0.694 0.843 0.036 0.622 

Irf6 3803.1 Badis09 FR 0.789 0.716 0.829 0.040 0.668 

Nfil3 TF_10 DREAM FR 0.681 0.476 0.724 0.044 0.345 

Nfil3 TF_10 DREAM BEEML 0.728 0.522 0.737 0.009 0.518 

Irf4 

Irf6 

Nfil3 

Nfi

l3 

P: TTTCNNTTTC 

S: TTTCNNTTTC 

P: TTTCNNTTTC 

S: TTTCNNTTTC 

P: TTACGTAA 

S: TTACGTAA 

P: TTACGTAA 

S: TTACGTAA 
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Category 5. POU+Homeodomains 

In this category, all three examples have the “classic” primary and secondary 

POU+Homeodomain motifs of TAAT and ATGCWWW. 

 

   

Name TF_ID Study Alg. r(P,T) r(S,T) r(P+S,T) Impr r(P,S) 

Oct-1 TF_13 DREAM BEEML 0.839 0.541 0.856 0.017 0.465 

Pou1f1 TF_51 DREAM FR 0.871 0.493 0.890 0.019 0.370 

Pou1f1 TF_51 DREAM BEEML 0.841 0.626 0.849 0.008 0.635 

Oct1 

Pou1f1 

Pou1f1 
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Category 6. Motif “extensions” 

In this category, the secondary motif is visually similar to the primary motif, but it includes 

additional bases. 

 

   

Name TF_ID Study Alg. r(P,T) r(S,T) r(P+S,T) Impr r(P,S) 

Lef1 3504.1 Badis09 FR 0.691 0.506 0.724 0.033 0.445 

Nr2e1 TF_48 DREAM FR 0.850 0.361 0.863 0.014 0.246 

Nr5a2 TF_50 DREAM FR 0.509 0.221 0.526 0.017 0.173 

Sfpi1 1034.3 Badis09 BEEML 0.661 0.656 0.673 0.012 0.902 

Sfpi1 1034.3 Badis09 FR 0.666 0.479 0.683 0.016 0.528 

Lef1 

Nr2e1 

Nr5a2 

Sfpi1 

Sfpi1 
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Category 6. Motif “extensions” (cont’d) 

   

Name TF_ID Study Alg. r(P,T) r(S,T) r(P+S,T) Impr r(P,S) 

Sp100 2947.2 Badis09 FR 0.818 0.605 0.854 0.036 0.450 

Tbx2 TF_22 DREAM BEEML 0.841 0.480 0.872 0.032 0.307 

Tbx2 TF_22 DREAM FR 0.814 0.324 0.827 0.013 0.224 

Tbx20 TF_23 DREAM FR 0.832 0.431 0.841 0.008 0.351 

Tcf7l2 3461.1 Badis09 FR 0.836 0.559 0.866 0.030 0.424 

Sp100 

Tbx2 

Tbx2 

Tbx20 

Tcf7l2 
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Category 7. C2H2 Zinc Fingers 

The majority of “effective” secondary motifs that we identified are for C2H2 zinc fingers.  Many 

include “extensions” similar to the previous category, which might be examples of additional zinc 

finger arrays being utilized.  In other cases, the motifs are entirely unrelated.  In such cases, a 

different set of zinc finger array might be utilized for DNA binding. 

 

   

Name TF_ID Study Alg. r(P,T) r(S,T) r(P+S,T) Impr r(P,S) 

Egr3 TF_39 DREAM FR 0.562 0.520 0.639 0.077 0.395 

Klf9 TF_6 DREAM FR 0.357 0.388 0.377 0.020 0.683 

Zfp187 2626.2 Badis09 FR 0.376 0.353 0.452 0.076 -0.140 

Zfp202 TF_28 DREAM FR 0.708 0.244 0.717 0.009 0.186 

Zfp281 0973.2 Badis09 FR 0.806 0.657 0.809 0.003 0.694 

Egr3 

Klf9 

Zfp187 

Zfp202 

Zfp281 
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Category 7. C2H2 Zinc Fingers (cont’d) 

  

 

Name TF_ID Study Alg. r(P,T) r(S,T) r(P+S,T) Impr r(P,S) 

Zfp300 TF_60 DREAM BEEML 0.314 0.148 0.342 0.028 0.038 

Zfp300 TF_60 DREAM FR 0.569 0.024 0.576 0.007 -0.119 

Zfx TF_31 DREAM FR 0.784 0.226 0.828 0.044 -0.077 

Zic1 0991.2 Badis09 BEEML 0.754 0.805 0.818 0.064 0.800 

Zic2 2895.2 Badis09 BEEML 0.803 0.614 0.804 0.001 0.708 

Zfp300 

Zfp300 

Zfx 

Zic1 

Zic2 
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Category 7. C2H2 Zinc Fingers (cont’d)  

 

 

 

  

Name TF_ID Study Alg. r(P,T) r(S,T) r(P+S,T) Impr r(P,S) 

Zic3 3119.2 Badis09 BEEML 0.672 0.767 0.773 0.100 0.804 

Zic5 TF_62 DREAM FR 0.226 0.258 0.275 0.049 0.436 

Zic5 TF_62 DREAM BEEML 0.613 0.571 0.631 0.017 0.722 

Zkscan1 TF_32 DREAM BEEML 0.241 0.523 0.549 0.309 0.142 

Zscan10 TF_33 DREAM FR 0.467 0.162 0.492 0.025 -0.002 

Zic3 

Zic5 

Zic5 

Zkscan1 

Zscan10 
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Supplementary Note 7. Evaluation of PBM-trained models on 

other experimental platforms 

To address the possibility that our results are specific to the PBM technology, we compiled data 

for 23 yeast TFs and 1 mouse TF with available MITOMI (Maerkl and Quake 2009; Fordyce et 

al. 2010) or HiTS-FLIP (Nutio et al. 2011) data, all of which also have PBM data available from 

other studies (Badis et al. 2008; Badis et al. 2009; Zhu et al. 2009).  For each TF, we trained the 

FeatureREDUCE algorithm using each of its four settings (PWM, dinucleotides, 

dinucleotides+k-mers, and secondary motifs).  We then evaluated the predictions of 

FeatureREDUCE using the Pearson correlation between the predictions and the actual values 

produced by the other technology. 

We found only a handful of cases where the more advanced models offered substantial 

improvement over the PWM model (Supplementary Note 7 Figure 1).  Specifically, 

dinucleotides never substantially improved performance (Supplementary Note 7 Figure 1, 

panel i), with a maximum increase in Pearson correlation of only 0.03, for Msn2.  Likewise, k-

mers substantially increased performance in only one case, while substantially decreasing 

performance for three TFs (Supplementary Note 7 Figure 1, panel ii).  Secondary motifs 

strongly improved performance for some TFs, while strongly hurting performance for others 

(Supplementary Note 7 Figure 1, panel iii).  Manual inspection of the six TFs for which 

secondary motifs helped indicated four potentially “legitimate” instances of secondary motifs 

(two for Cbf1, and one each for Msn2 and Met32, see Supplementary Note 7 Table 1).  In the 

case of Cbf1, the same secondary motif (a two base extension of the primary CACGTG motif to 

CACGTGAC) has been reported to be enriched in ChIP-Chip data for Cbf1 in multiple studies 

(Lavoie et al. 2010; Morozov et al. 2007; MacIsaac et al. 2006). 

In general, we found that the majority of PBM-derived FeatureREDUCE PWMs could predict 

MITOMI scores with at least moderate accuracy (r > 0.50), and that all of the cases where a 
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PBM-derived PWM performed poorly on MITOMI data (r < 0.25) are also cases where the PBM-

derived PWM performed poorly in PBM cross validation (r < 0.25) (Supplementary Note 7 

Figure 1, panel iv).  Thus, in summary, our results indicate that in cases where 

FeatureREDUCE is able to learn an accurate PWM from PBM data, this PWM is capable of 

accurately predicting MITOMI values, and more complicated models offer little to no 

improvement in most of these cases. 
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Aft2 

Bas1 

Cbf1 

Supplementary Note 7 Figure 1. Comparison of FeatureREDUCE model performance on 

other technologies 

For each of the 24 TFs, we trained FeatureREDUCE on PBM data using each of its four modes, 

and evaluated using the Pearson correlation between its predictions and the values obtained from 

another technology.  Panels i – iii depict, for each TF, the evaluation score of the PWM model 

compared to the dinucleotide model (i), the k-mer model (ii), and the secondary motifs model (iii).  

Panel iv depicts the relationship between the evaluation score of the PWM model on the other 

PBM array and its evaluation score on the other technology.  TFs discussed in the text are 

indicated.  Color key: blue, TF where the more advanced model substantially increases 

performance; green, TF where the more advanced model substantially hurts performance; red, TF 

where secondary motifs increase performance for trivial reasons (see Supplementary Note 7 

Table 1). 

Stb5 

Cin5 

Reb1 
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TF (T)1 Impr2 PWM 13 PWM 24 Note 

Dal80 
(M2) 

0.39  

 
0.00 

 

 
0.39 

“Second 
chance”: 

PWM1 has low 
correlation 

Bas1 
(M2) 

0.38  

 
0.16 

 

 
0.54 

“Second 
chance”: 

PWM1 has low 
correlation 

Cbf1 
(M1) 

0.32  

 
0.56 

 

 
0.88 

“Motif extension”: 
Secondary motif 

includes two 
additional bases 

Aft2 
(M2) 

0.16  

 
0.62 

 

 
0.77 

“Fine tune”: 
Secondary motif 
is a variation on 
the primary motif 

(similar 
consensus 
sequence) 

Ace2 
(M2) 

0.15  

 
0.02 

 

 
0.17 

Neither PWM 
performs well 

Cbf1 
(M2) 

0.15  

 
0.51 

 

 
0.66 

“Motif extension”: 
Secondary motif 

includes two 
additional bases 
(same as other 
CBF1 example) 

Msn2 
(M2) 

0.13  

 
0.23 

 

 
0.36 

“Motif extension” 
or utilization of 
additional zinc 

fingers 

Supplementary Note 7 Table 1.  Motifs where secondary motifs substantially increase 

cross-platform performance. 
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1 TF Name, and source of the other technology.  M1 indicates the original MITOMI study (Maerkl 

and Quake 2007); M2 indicates a second study (Fordyce et al. 2010). 

2 Improvement of secondary motifs over a single PWM (i.e. the difference of the two Pearson 

correlations). 

3 Sequence logo depicting the primary motif detected by FeatureREDUCE in the PBM data.  

Pearson correlation obtained by the primary motif in the evaluations is indicated at the bottom. 

4 Sequence logo for the secondary motif.  Pearson correlation of the predictions produced by the 

weighted combination of the primary and secondary motifs is indicated at the bottom. 
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Supplementary Note 8.  Description of biophysical models, 

and comparison to log-odds scoring 

Two scoring approaches, log-odds and energy-based, are predominantly utilized for identifying 

potential TF binding sites in DNA sequences.  Both approaches employ a Position Weight 

Matrix (PWM), which is a table that contains a value for each possible base b at each sequence 

position i in a sequence of length N; the values in the table are taken to represent the 

preference for each base at each position.  PWM-based approaches differ in the meaning of the 

values they contain, and the way the PWM is used to score sequences.  A common type of 

PWM is the position frequency matrix (PFM), which is easily calculated from aligned sequences 

by tallying the frequency of each possible base at each sequence position.   

 

Log-odds-based sequence scoring approaches assign scores representing the log of the odds 

ratio that the given sequence is generated by the motif, as opposed to a background 

distribution.  A single sequence s of length N is scored with a PFM f and background base 

probabilities p under the log-odds framework using equation (1): 

(1)  



N

i TGCAb b

bi

bi
p

f
sIpfsLogOdds

1 },,,{

,

, log)(),,(


, 

where I is the indicator function, which assumes a value of 1 if the given base b occurs at 

position i in sequence s.  Popular choices for background distributions include genomic (or 

intergenic) GC content, and uniform distributions (i.e. 0.25 for all nucleotides).  Since the 

produced score is in log space, it is often exponentiated to obtain the final probability score for 

the given sequence. 

 

A conceptual difficulty with the log-odds approach is that it is not clear whether its statistical 

framework is truly reflective of the biophysics that underlies TF binding.  Energy-based scoring 
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systems seek to overcome this shortcoming.  In contrast to log-odds methods, such systems 

use a biophysical framework based on Boltzmann distributions to score subsequences.  The 

advantage of such a framework is that it enables the probability of binding to be calculated for 

any protein concentration.  In order to score a given sequence, a PFM is first converted into a 

special type of PWM called an energy matrix (here denoted E), which represents the relative 

free energy of binding (often referred to as ΔG), using equation (2): 

(2) )log(min)log( ,
},,,{

,, bi
TGCAb

bibi ffE 


, 

where min represents the minimum function.  The resulting energy matrix therefore assigns a 

value of 0 to the preferred base at each position, with all other values representing the 

difference in binding free energy (ΔΔG) relative to the preferred base.  The total energy 

contribution of a sequence is then calculated by summing up the corresponding entries of the 

energy matrix: 

(3)  



N

i TGCAb

bibi EsIEsEnergy
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 , 

and the final energy score of a given sequence for a given amount µ of the TF is calculated as 

(4)
)(1

1



Energye

eEnergyScor . 

Here, µ is defined as: 

(5)
)(

]ln[

refd SK

TF
 , 

where [TF] denotes the total concentration of free TF, and Kd(Sref) is the dissociation constant of 

the reference sequence.  In general, even if the total concentration of the TF is known, [TF] is 

unknown.  However, some methods (such as BEEML-PBM) attempt to estimate µ from the data 

along with the PWM parameters. 

 

We illustrate here the effect of the µ parameter on the relationship between the scores produced 
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by the log-odds and energy scoring systems.  We scored all 32,896 unique 8 base sequences 

under both frameworks using a single PWM produced by the BEEML-PBM algorithm for Sox10 

(TF_18).  For all three examples, we used a uniform distribution for the log-odds background 

base probabilities (as we do throughout this study).  Supplementary Note 8 Figure 1 panel a, 

depicts the relationship between log-odds and energy scores upon setting µ to zero (i.e. 

ignoring the effect of TF concentration).  In this setting, the scoring systems produce nearly 

identical results, since equations (1) and (4) are nearly identical except for the subtraction of the 

minimum base frequency in equation (2).  In Supplementary Note 8 Figure 1 panel b, the 

relationship is depicted when using the value determined by BEEML-PBM for µ for this 

experiment, -12.9.  Negative values of µ spread out the medium and upper ranges of energy 

scores, relative to the log-odds scores.  In effect, this places greater emphasis on scoring 

differences between the most strongly preferred sites.  The opposite effect is obtained with 

positive values for µ (Supplementary Note 8 Figure 1, panel c), which result in smaller relative 

differences between scores.  The inclusion of the µ parameter therefore allows a fine-tuning of 

the score distribution, thus accounting for the non-linear relationship between statistics and the 

underlying biophysical interactions.  In our in vitro dataset, BEEML-PBM mostly estimated 

negative values for µ (41 of 66 TFs had negative values, with a median value of -2.451).  As 

shown in Supplementary Note 5, we found that the inclusion of the µ parameter substantially 

improved the overall performance of BEEML-PBM.  We note that µ should be useful in an in 

vivo setting as well, since intuitively the probability of a TF binding to a particular site should be 

dependent on the amount of free TF present in the cell.   
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Supplementary Note 8 Figure 1.  Comparison of energy and log-odds scoring systems 

Illustration of the effect of the µ parameter on the relationship between the scores produced by 

the log-odds and energy scoring systems.  Each panel depicts the energy and log-odds score 

for all 32,896 unique 8 base sequences using a single PWM produced by the BEEML-PBM 

algorithm for Sox10 (TF_18).  The value of the µ parameter, which is used only in the energy 

scoring system, is varied across the three panels (value indicated at top). 
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Supplementary Note 9.  Full descriptions of algorithms 

 

I. Brief description of published and novel algorithms 

BEEML-PBM 

We ran two versions of BEEML-PBM: one using PWMs, one using dinucleotides.  For the PWM 

version, we ran BEEML-PBM on each training experiment using PWMs of width 7 to 10.  The 

width producing the highest correlation between the predicted intensities and the training 

intensities was chosen as the final PWM for each experiment.  The dinucleotide models take 

substantially longer to run, so we only used widths of 10 because, in general, this size produced 

the best results using the PWMs.  For both versions, we used the following parameters, per the 

author’s suggestions: num.trials = 10 (number of random starts for optimization); max.iter = 20 

(max number of iterations in levenberg-marquardt optimation); lambda = 0.1 (regularization 

control). 

 

FeatureREDUCE 

We ran FeatureREDUCE using its default settings (available upon request). FeatureREDUCE 

estimates multiplicative affinity parameters associated with both mononucleotides and 

dinucleotides. For the full model, we included the ‘-kmer’ option, which additively models PBM-

specific biases using k-mers of length 4 to 8. For FeatureREDUCE_dinuc, we did not include 

the ‘-kmer’ option.  For FeatureREDUCE_PWM, we used the ‘-nodinuc’ option, and did not 

include the ‘-kmer’ option.  A more detailed description of the FeatureREDUCE algorithm is 

provided at the end of this document. 

 

MatrixREDUCE 

We obtained MatrixREDUCE v1.0 and ran it using the recommended settings: -dyad_length=3 -

flank=3 -min_gap=0 -max_gap=20 -max_motif=1 -motif=7-10. 

 

RankMotif++ 

We ran RankMotif++ using the settings recommended by the authors (Badis et al. 2009).  

Namely, the following options were used: -u 1 (log transform the probe intensities); -p 3 (positive 

probe threshold); -c 1.5 (confidence interval scale); -n 400 (400 negative sequences); -s 5 (five 

restarts); -a ACGT; -r TGCA.  We varied the PWM width from 6 to 13 using the “-w” option, and 

used the single best PFM (as determined by RankMotif++’s internal criteria).  Multiple attempts 

at variations on parameter settings produced similar results. 
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Seed-and-Wobble 

Seed-and-Wobble can be run in three different modes: continuous (which only considers 

continuous motif patterns), gapped (which allows gaps in the motif), and symmetric gapped 

(which allows a single gap between the two half sites, where the half sites are of the same 

length).  For the gapped version, we tried all 330 possible gapped patterns of length 8 with gaps 

up to length 5.  For the symmetric version, we tried nine possible patterns, from a gap of length 

0 to a gap of length 8.   For the continuous version, we only used continuous 8-mers.  For all 

three modes, we used the default parameters: startposition=2 (position from end of probe to 

consider); Escore_cutoff=0.25 (to store for integrated list of top k-mers from all seeds); topN = 1; 

(number of top k-mer seeds to use for seed-and-wobble PWM construction).  Each Seed-and-

Wobble PFM was “trimmed” based on the information content at each position, as described in 

(Badis et al. 2009).  We found that the continuous version performed best in our evaluation 

scheme, so we only include results from the continuous version. 

 

8mer_max 

This algorithm first converts the predicted probe intensities to 8-mer scores by calculating the 

median probe intensity of each 8-mer.  Each test array probe is then scored by taking the 

maximum scoring 8-mer that occurs in its probe sequence. 

 

8mer_sum 

Same as 8mer_max, but the sum of all 8-mer sequences is used to score each test probe. 

 

8mer_pos 

Same as 8mer_sum, but takes into account the position within the probe sequence of each 8-

mer, using a scheme similar to that of BEEML-PBM (Zhao and Stormo 2011).  In brief, the 

algorithm identifies for each experiment the top 25 8-mers (based on median intensities), and 

calculates the mean intensity of these top-scoring 8-mers at each probe position.  This results in 

a distribution containing the mean intensity of high-scoring 8-mers at each probe position 

(across all 66 experiments).  This distribution is then used to correct for position effects by 

essentially dividing the observed frequency of each 8-mer at each position by its expected 

intensity.  Full details of the algorithm can be found in (Zhao and Stormo 2011). 

    

PWM_align 

Calculates 8-mer E-scores as described in (Berger and Bulyk 2006).  Aligns all 8-mers with E-

score > 0.45 using ClustalW, then trims the resulting alignment by restricting to positions 
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present in at least half of the sequences in the alignment. The resulting alignment is then 

converted to a position frequency matrix. 

 

PWM_align_E 

Aligns 8-mers with E-scores > 0.45, as described for PWM_align.  Before converting to a PFM, 

each sequence in the alignment is first weighted by the E-score of the corresponding sequence.  

For example, if the top-scoring 8-mer is 0.49 for the sequence GATGTTCC, this sequence gets 

counted 49 times in the alignment.  If the lowest scoring 8-mer is 0.45 for the sequence 

TGTGTTCT, this sequence counts 45 times in the alignment.  Thus, higher-scoring 8-mer 

receive higher weights in the final PFM frequencies. 

 

 

II. Full description of algorithms from the DREAM challenge 

 

Team_A: Reconstructing binding site motifs from PBM data – the 

Amadeus approach 

 

Introduction 

Our group is developing methods for motif finding based on co-regulated gene sets (Linhart, 

Halperin et al. 2008) or using raw expression data without a predefined gene set (Halperin, 

Linhart et al. 2009). We were therefore most interested in the power of these methods for 

detection of TFBS motifs (the Bonus Round). Towards this, we developed a fast and accurate 

method building on the capability of our Amadeus motif finder (Linhart, Halperin et al. 2008).  As 

an aside, we also used established learning methods for the main challenge, the results of 

which are described in this manuscript.  

 

Methods 

Motif reconstruction 

We developed a very simple, efficient and generic method for extracting binding site motifs 

(represented as a position weight matrix, PWM) from PBM data (Orenstein, Linhart et al. 2012). 

We first score each 9-mer based on the average binding intensity of the probes that contain it, 

and use the scores to rank the 9-mers. Note that we disregard the linker segment of the probes. 

We then provide the top 9-mers as a target set to our Amadeus motif finding algorithm (Linhart, 
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Halperin et al. 2008). The input to Amadeus is the 1000 top-ranked 9-mers, while the 

background set is all possible 9-mers, and its output is a PWM representing the motif. We had 

full success recovering correctly all 20 TFs in the training PBM data. Amadeus was optimized to 

work efficiently with large input sets and with the concise input here the algorithm works 

extremely fast, requiring 30-60 seconds per PBM dataset.  

 

Binding intensity prediction 

Our approach to the main challenge was to formulate the problem as a linear regression 

problem. We used two types of features: (1) 8-mers as Boolean features, indicating if an 8-mer 

appears in the probe sequence. ehT 1000 top and 250 bottom ranking 8-mers in terms of their 

average intensity were used. These features are used for identifying specific binding. (2) Integer 

variables indicating the number of occurrences of each of the 64 possible nucleotide triplets in 

the probe sequence. These variables are used for evaluating non-specific binding. Each probe 

was thus assigned a set of 1314 features and a linear regression between the features and the 

probe’s intensity was computed using the Lasso algorithm (Tibshirani 1996).  The resulting 

feature weights are then used to predict binding intensities of the test probes. The average 

correlation on the test examples was 0.66 with a standard deviation of 0.1. 

 

Discussion 

Our probe ranking method did not fare well in the main challenge, probably since its defining 

feature set was too simplistic and not informative enough. Possible directions for improvement 

include accounting for the effect of PBM array geometry on probe intensities and the use of 

more features for non-specific binding. 

In contrast, the motif finding method, which was our main focus, is extremely fast and highly 

accurate, and was one of two best performers in the Bonus Round. We believe that the method 

captures well the information of specific binding, as opposed to non-specific binding. Our fast 

and simple pre-processing phase (selecting the top ranking 9-mers) has the advantage of 

discarding noise, which improves the accuracy of the PWM. A key advantage of our method is 

speed – running two orders of magnitude faster than other PBM-based motif finding methods. 

Moreover, Amadeus allows us to statistically integrate data from multiple PBMs, and even 

analyze together PBM and other data types (e.g., a target gene set from an expression/ChIP-

chip experiment, or PBM for a related species) pertinent to the same TF. Another advantage is 

the generality of the approach, as any of the many available motif finders can be used in the 

second phase. 
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Team_B: Incorporating motif discovery into feature extraction when 

predicting protein-DNA binding affinity 

 

Introduction 

The proposed method aims to extract distinguishing sequence features by motif discovery for 

predicting the binding specificity of transcription factors (TFs).  

 

Methods 

Given a protein binding microarray (PBM) as the training dataset, we extracted the top 1000 

probe sequences with the highest signal intensities (each intensity value was subtracted by its 

corresponding background value) as the positive set and the 1000 probe sequences with the 

lowest signal intensities as the negative set. We then conducted motif discovery by using 

eTFBS (http://biominer.csie.cyu.edu.tw/etfbs/), a motif discovery tool that employs the algorithm 

proposed in (Chen, Tsai et al. 2008) to find over-represented subsequences in the positive set 

versus the negative set. Each group of similar over-represented subsequences is summarized 

as a position frequency matrix (PFM). For a TF, a number of such motifs are discovered by 

eTFBS using the default parameter settings. These PFMs were considered as the candidates of 

binding motifs for the TF of interest in the following analyses. 

Next, we used the mSS scores employed in (Kel, Gößling et al. 2003) to calculate the similarity 

between a motif M and a probe sequence S:  
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where m is the length of the motif M and Sp1:p2 stands for the subsequence of S starting at the 

position p1 and ending at the position p2. 

We expected that the mSS score of a probe sequence in a PBM should be highly correlated 

with the probe intensity measured by the PBM. That is, if the motif M is more similar to the real 

binding profile of the TF, the correlation value would be higher. Spearman’s rank correlation 

coefficient was applied on the vector of the mSS scores against the vector of measured PBM 

signals based on the positive set of a training array. We defined the set of positive probes using 

a method similar to that employed by the RankMotif++ algorithm (Chen, Hughes et al. 2007). 

The only difference is that we required the number of positive probes in the set to be at least 

1600. We calculated the Spearman’s rank correlation coefficient for all the motif candidates and 

assigned the one with the highest value as the binding motif of the TF of interest. 

For each probe sequence in the training array, we collected at least one motif (the one with the 

highest correlation score along with those with a correlation score > 0.8the score of the top 



49 
 

motif) for calculating mSS scores and used them as the features for constructing regression 

models. In addition to the mSS scores, we also calculated the g scores (equation (9) in (Chen, 

Hughes et al. 2007)) for each motif and included them in the feature set for constructing the 

predictive model as well. Each probe sequence employs the normalized signal intensity 

(normalized by the method described in (Chen, Hughes et al. 2007)) as the target value when 

conducting SVR training (using nu-SVR of LIBSVM (Chang and Lin 2001)). Five-fold cross-

validation was performed to find the best parameter settings based on only the instances in the 

positive set. After the regression model was constructed using the parameter combination that 

achieves the best performance on the training data, the prediction was made for the 

corresponding testing array. 

 

Discussion 

The proposed method did not perform as well as expected. Two potential reasons might have 

caused this result. First, the features adopted in building the regression models rely heavily on 

the discovered motifs. For better performance, probe-specific but TF-independent features 

might be necessary. Second, when constructing the regression models, only a small set of high-

intensity probes were used for parameter tuning. The constructed regression models might have 

poor predictions on low-intensity probes. Although the performance of predicting binding affinity 

did not perform as well as expected, we observed that the motifs discovered by the proposed 

method are consistent between ME and HK arrays. 
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Team_C: Random Forests for predicting TF-DNA binding 

 

Introduction 

The method applied by our team blends two methods. One is based on random forests, a 

machine learning algorithm; the other is the more classical bioinformatical approach of motif 

finding. We begin modelling by selecting a sample of sequences with evenly distributed binding 

intensities that is subsequently divided randomly into two equal sets – the training set and 

validation set. Then we construct, for each sequence, several sets of descriptive variables that 

will be used by the machine learning. Next, the random forest classifier is trained on the training 

set data using these variables. The motif finding algorithm is also applied for a subset of 

sequences with high binding intensities.  In the following step all algorithms are used to predict 

binding intensities of sequences from the validation set. Finally, a random forest model is 

constructed from the validation set with prediction of the individual algorithms used as 

descriptive variables. The classifier obtained in this way is then used for predicting the binding 

intensities of all probe sequences.  

 

Methods 

No pre-processing of the signal intensities was performed, apart from a logarithmic 

transformation of the binding intensities. Although the distribution of the binding intensities is far 

from uniform (with very large bias towards low binding intensities) we equalize the distribution 

using the following procedure. We first draw 2000 random numbers from a uniform distribution 

covering the entire range of binding intensities. Then, for each number, the sequence with the 

closest binding intensity is recruited to the sample. Finally duplicates are removed. The size of 

the resulting sample varied between 807 sequences (TF 53) and 1685 (TF 6). The resulting 

sample is then evenly split between the training set and the validation set.  

Machine learning (ML) algorithms deal with data in the form of an information system that is a 

table, where rows correspond to objects and columns to variables describing these objects, 

including one column for a decision variable.  The algorithm then learns the associations that 

connect descriptive variables to particular values of the decision variable.  Therefore, the first 

step towards an application of ML methods is converting a string representing a sequence to a 

form suitable for input.  To this end, we used n-gram spectra. In this representation, one records 

for all possible substrings of length n whether they are present or not in a given string: the 

corresponding attribute takes values of 1 or 0, respectively. For an alphabet of size A, there are 

An possible substrings (and hence An descriptive variables in the information system). We used 

4-, 5- and 6-gram spectra resulting in information systems with 256, 1024 and 4096 variables, 

respectively. The decision variable was the binding intensity. The random forest (Breiman 2001) 

in the regression variant was grown using the training set. Additionally, for each system, we 

found those n-grams that contribute significantly to the random forest outcome with the help of 
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the Boruta algorithm (Kursa, Jankowski et al. 2010; Kursa and Rudnicki 2010). Then we used 

these attributes to grow additional random forests.  

An alternative method was based on a motif finding algorithm.  RankMotif++(Chen, Hughes et 

al. 2007)  was run 4 times for each TF using the subset of sequences with high binding 

intensities, and the motif with the highest likelihood was retained. Then the MAST program from 

the MEME suite of programs was used to find motifs in a data set. The result for each sequence 

was a p-value for finding the motif in a given sequence.   

Finally all algorithms that were trained on the training set were used to predict binding intensities 

for the test set. These values were used as attributes for the random forest algorithm that was 

used for blending. Subsequently, we used contributing algorithms to predict the binding 

intensities for all sequences and used blender random forest to obtain the final results.  

 

Discussion 

We used fraction of explained variance, measured on the validation set, for internal evaluation 

of the performance of contributing algorithms. The best results were obtained for the random 

forest trained on 5-grams -- the average fraction of the explained variance was 55%.  

The feature selection procedure gave significant reduction of the number of variables used for 

model building. The average number of important features was reduced to 62 for 5-gram 

representation. Unfortunately, models built on the reduced sets performed slightly worse, with 

average explained variance in the validation set equal to 51%. 

The results of RankMotif++ were significantly worse than that of the random forest models, with 

24% explained variance on the validation set. Despite the lower accuracy of RankMotif++ 

results, they were included into the final blend along with the results of 4 random forest 

classifiers. It is interesting to note that feature selection actually slightly decreased the accuracy 

of the model on the training set. Nevertheless, we decided to include models built on reduced 

sets in the blend as well.  

Unfortunately, the results of the final classifier applied to the test set were significantly worse 

than the internal tests of the individual models on the validation set.  This likely happened due to 

insufficient sampling of the sequence space both in the training and validation sets, resulting in 

models that were over trained for the particular subset of probe sequences.  

 

 

  



52 
 

Team_D: A linear model for predicting TF binding affinities based on 

protein binding microarray measurements 

 

Introduction 

Protein binding microarrays (PBMs) are a high throughput technology used for measuring a 

protein’s binding affinity toward thousands of double-stranded DNA sequences at once. We 

present a linear model that uses PBM measurements to build a protein binding profile that can 

be used to predict a protein’s binding affinity towards short DNA sequences. Rather than being 

based on position weight matrix (PWM) models where adjacent nucleotides are assumed 

independent, our model learns the protein’s binding specificity towards a set of short nucleotide 

strings (k-mers).  Full details of our method are provided in (Annala, Laurila et al. 2011). 

Methods 

Our method first constructs a spatial intensity map and intensity histogram for each PBM 

sample. Probes with very low intensities are discarded using a threshold derived from the 

intensity histogram. Next, spatial detrending is applied by rescaling the intensity of each 

microarray spot by the ratio of the global median and the median calculated within a 7x7 window 

centered on the spot. This step compensates for the spatial trends (light or dark blotches) often 

seen in microarray samples. After this, the samples used for learning the motif models are 

quantile normalized. The quantile normalization step is able to recover high intensity tails in 

saturated PBM samples. It is critical that we do not simply discard the saturated probes as we 

did with dark probes, because whereas dark probes can be considered non-informative, high 

intensity probes are the most informative features in terms of binding affinity. 

After pre-processing the PBM samples, our algorithm constructs a design matrix H for each 

PBM array involved in the experiment, so that 
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The design matrix is built in a strand specific manner, so that reverse complement k-mers are 

considered separately. An extra column of ones is also added to the design matrix in order to 

account for a constant background in the probe intensities. 

Once a design matrix has been constructed, we solve the k-mer affinity contributions α  from the 

linear system 

εHαp  , 
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where p represents the log-transformed probe intensities from a PBM experiment, and the error 

term ε accounts for noise in the measured probe intensities. If we include all 4-8 mers in the 

design matrix H, the system can easily become underdetermined. For this reason, we regularize 

the system by only including those 7-8-mers with the highest median intensity across the probes 

that contain them. We also include all 4-6-mers, since they are critical for accurately predicting 

the intensities of low affinity probes. This regularization approach is based on the assumption 

that k-mers with the highest median intensity are the most informative in terms of protein 

binding. 

This sparse but large linear system is solved for the affinity vector by applying the conjugate 

gradient method to the normal equations pHαHH TT ˆ . Once the affinity vector α̂  of a protein 

has been estimated from the data, we use it to predict binding intensities of probes on another 

PBM array (or any DNA sequences) by constructing another design matrix H´ for the given 

sequences, and calculating the predicted intensities αH'p' ˆ . 

 

Discussion 

Our method was ranked as the best performer in the DREAM5 challenge, and although its 

prediction accuracy did vary between TFs, we found our pre-processing steps to significantly 

improve the results for samples containing hybridization artifacts (Annala, Laurila et al. 2011). 

And while we here only used the model in predicting PBM probe intensities, the model can also 

be applied in less artificial contexts. One obvious application is to use our model for predicting 

genomic binding sites and their associated TF affinities. With some adjustment, we suspect that 

our model can also be applied to ChIP-seq data. 
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Team_E: Prediction of TF-DNA interactions with Protein Binding 

Microarrays using basic PWM models 

 

Introduction 

In this challenge, we used a position weight matrix (PWM) as binding site model for predicting 

the read-out of a PBM experiment. In a PWM, the columns represent the weights for each of the 

4 bases at the corresponding position in the binding sequence. The basic assumption in the 

PWM model is that each position in a binding site contributes independently and additively to 

the binding energy. We used a standard Expectation-Maximization algorithm for inferring the 

models from the data. Our prediction method further takes a reproducible probe-specific but 

factor-independent bias into account. The latter may have improved the ranking of our team by 

the performance measures used, without actually contributing to an understanding of the 

binding specificities of the factors under investigation. Furthermore, our approach is not 

completely automatic. Some parameter choices for model training were based on intuitive 

judgments from exploratory analysis of the training data.  In summary, the good performance of 

our team indicates that good binding site models can be derived from PBM data with a 

combination of common sense and existing, well established sequence analysis methods. 

 

Methods 

Data pre-processing  

All computations were carried out in log-space. We first converted the signal mean values into 

logarithms of base 10. No other values were used for pre-processing. In particular we did not 

exclude measurements flagged as bad quality.  Before submitting the predictions, we 

reconverted the log-values into mean signal values by exponentiation.  

 

Description of the Method         

Our prediction method is based on the following linear model,  

),(Score MScbmay iii   

Here, yi is the binding score (log-transformed signal mean) for sequence Si, mi is the mean of  yi 

over all experiments carried out with the same microarray (HK or ME), M is a binding site model 

for the factor under consideration, and “Score” is a scoring function that returns a predicted 

signal mean value for a given sequence and binding site model.  

As binding site model we used a standard position weight matrix (PWM). The PWMs were 

derived in a semi-automatic fashion. For each training array, we first ranked the probe 
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sequences by the binding score and submitted the top 1000 sequences to the motif discovery 

program MEME (Bailey and Elkan 1994), in order to find up to three over-represented motifs. 

We then approximated the PWMs returned by MEME by several consensus sequences, and 

analyzed the enrichment of these consensus sequences across the ranked probe sequences in 

bins of 1000. We also investigated the positional distribution of the consensus sequence 

matches within the probe sequences in order to optimally delimit the length of the motif. At the 

end of this exploratory phase, we defined for each factor a consensus sequence to be used as 

initial model for retraining, as well as the number of top-ranked training sequences.  If no 

convincing motif was returned by MEME, we decided to base the predictions solely on the 

probe-specific variable mi. In a few cases, we decided to use an invariable AT-rich motif of 

length 8, instead of a factor-specific re-trained model. 

The PWM model was retrained by Expectation-Maximization using the hidden Markov modeling 

program MAMOT (Schütz and Delorenzi 2008). In this process, the hidden Markov model 

serves as an envelope for the PWM, the purpose of which is to model the complete probe 

sequence, not just the subsequence corresponding to the transcription factor binding site. The 

starting HMMs were generated by inserting a PWM-like module derived from the chosen 

consensus sequence between loop-states that serve to absorb probe sequence outside the 

binding site. Separate PWM blocks are used to model binding sites in opposite orientations. In 

addition, our HMM architecture features a third path for absorbing random sequences not 

containing a binding site. We use the Forward algorithm to score the probe sequences of the 

training and test array with the trained model. More specifically and using HMM jargon, Score(Si 

,M) in the above formula was computed as the logarithm of the probability of the sequence 

given the model. 

Once a PWM model was obtained for a given factor, we estimated the parameters a, b and c of 

the above linear model with the training data and then used these estimates to predict the signal 

mean of the test probes. More precisely, these final steps were carried out according to the 

following recipe:  

(1) Score sequences of training array with trained model 
(2) Standardize the values of mi and Score(Si ,M) for training array 
(3) Estimate coefficients a, b, c by least square fitting 
(4) Score sequences of test array with PWM model  
(5) Compute yi from standardized values mi and Score(Si ,M) for test array 
(6) Convert predicted log-scaled yi for test array into signal means 

 

Discussion 

We were able to build PWM models for 57 of the 66 targets. For 4 targets, we could only identify 

a general trend towards binding of AT-rich sequences. For the five remaining factors we based 

the predictions solely on the probe mean values. In comparison to more sophisticated 

approaches, we reached remarkably good performance with a simple, PWM-based method. 

This may suggest that a PWM model still represents a good compromise between robustness 

and expressivity. The fact that we took into account a probe-specific but factor-independent bias 

undoubtedly improved our predictions substantially, especially with regards to the global 
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performance indices based on all PWM measurements.  We still feel that there is ample room 

for improvement of our basic method. Due to time pressure, we made many choices without 

evaluating obvious alternatives. For instance, we have used a standard EM training algorithm 

based on a positive set of examples. Using a sequence weighting scheme based on the PBM 

signal may very well improve the model accuracy. Instead of a linear model to combine factor-

specific and probe-inherent binding propensities, one could consider various non-linear ways to 

integrate these effects. Moreover, our basic methodology could easily be extended to 

dinucleotide-based or higher order PWM models. From this perspective, the performance we 

reached in this challenge constitutes a useful baseline to evaluate the relative benefits and 

drawbacks of the afore-mentioned extensions and alternatives.  
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Team_F: Analyzing protein binding microarrays by an extension of 

the discriminative motif discovery tool Dispom to weighted data 

 

Introduction  

Our approach assumes that the intensities measured by protein binding microarrays (PBMs) 

can be explained by the occurrence of an instance of some binding motif within a probe 

sequence. Under this assumption, de-novo motif discovery approaches may serve as a suitable 

tool for analyzing PBM data. However, most approaches cannot cope with soft-labeled data, 

which would result in a loss of information when learning the motif. Hence, we extend Dispom 

(Keilwagen, Grau et al. 2011), a discriminative position distribution and motif discovery tool, to 

weighted input sequences. We obtain these weights by mapping measured intensities to 

probabilities of binding. Dispom employs the widely used ZOOPS (zero or one occurrence per 

sequence) model, where the motif model is a weight array matrix (WAM) model, and the 

flanking model is a homogeneous Markov model. After learning the parameters of this model 

using an extension of the maximum supervised posterior (MSP) principle (Cerquides and 

Mántaras 2005) to weighted data (Grau 2010), the trained model can be used to predict 

probabilities of binding for probe sequences. We then map these predicted probabilities back to 

intensities based on the intensities measured for the training data. 

 

Methods 

Data pre-processing  

We initially exclude all probe sequences flagged as bad from the training set. For the remaining 

probes, we extract the first 40 nucleotides of the probe sequence, which comprises the 35 

unique nucleotides and 5 additional linker nucleotides. For training, we map the mean signal 

intensities to probabilities of binding based on the relative rank 
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rank of the intensity measured for probe n, and m denotes the maximum rank. 

 

We obtain the probability of binding, i.e. the probability of the foreground class, for probe n by 
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and the probability of the background class by
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fg
, where q denotes the a-priori 

proportion of probes with a weight greater than 0.5. In the experiments, we chose q=0.9. 
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Description of the method.  

We build a probabilistic classifier based on a ZOOPS model in the foreground and a 

homogeneous Markov model in the background, and we denote the class posterior of class c 

given sequence 



x n  and parameters 



  by ),( nxcP . Under the assumption that an input 

sequence contains exactly one occurrence of the motif, the likelihood of sequence 
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where 



Ppos(l) denotes the probability that a motif occurrence starts at position l , 



PF (x) 

denotes the likelihood given the flanking model, and 



PM (x) denotes the likelihood given the 

motif model. If an input sequence does not contain a motif occurrence, it is modeled by the 

flanking model alone. 

As a motif model, we use a WAM model, i.e. an inhomogeneous Markov model of order 1, and 

as a flanking model and for the background class, we use homogeneous Markov models of 

order 2 or 3. 

We learn the parameters 



  by an extension of the MSP principle to weighted data, where the 

log class posterior of each class, i.e. foreground (fg) and background (bg), contributes with 

weight 
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c, c fg, bg  to the objective function. The parameters are then numerically optimized 

with respect to 
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where the first term is a weighted variant of conditional likelihood, and 



Q( )denotes a prior on 

the parameters 



  with hyper-parameters 



 . Since this numerical optimization may get stuck in 

local optima or saddle points, we start from 10 different initializations.  After the parameters 

have been trained, they can be used to evaluate the class posterior for the probe sequences of 

the test array. 

Finally, we map these predicted probabilities of binding back to signal intensities by ranking the 

obtained probabilities and reporting the mean intensity of the same rank as the weighted 

average over all arrays of the same type, i.e. ME or HK, from the 20 PBMs of the training data. 

 

Discussion 

The extension of Dispom to weighted data was one of the top-scoring approaches of the main 

challenge. We assume that the strengths of this approach are i) a reasonable mapping of the 

intensities to weights combined with a discriminative approach, which allows for the inclusion of 
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all probe sequences into the training, and ii) the utilization of a WAM for modeling the motif, 

which can capture statistical dependencies between adjacent positions. Further experiments 

showed that performance can even be increased by using more complex motif models, and by 

optimizing the parameter q of the mapping.  However, this improved version of the algorithm 

has not been included in the re-evaluation in this manuscript. 
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Team_G: Prediction of transcription factor-DNA binding affinities with 

Protein Binding Microarrays using a linear model for k-mers 

 

Introduction 

A Protein Binding Microarray (Berger and Bulyk 2006) provides detailed measurements of 

affinities of a transcription factor to a large number of short DNA probe sequences. In order to 

describe this interaction we assume that a probe intensity can be modeled as a sum of affinities 

of individual short k-mer motifs occurring in the probe sequence. Formally, we model the 

observed probe intensities as a product of an occurrence matrix of in-probe-motifs and of a 

vector of unknown motif affinities. We apply a multiple linear model to estimate the motif 

affinities. In order to provide the best predictions, we evaluate different sets of motifs: k-mers of 

different lengths (k=4..8) with or without a central gap. Moreover, we test whether predictions 

are improved by unification of k-mers with their reverse complements, or by ignoring of k-mers 

located close to the start of the probe sequence.  

 

Methods 

A PBM experiment for a transcription factor may be represented as a set of pairs  

where  denotes a DNA sequence of a probe  and  is a corresponding binding affinity of 

the transcription factor calculated as logarithm of observed probe spot mean intensity. 

For our model we assume that the probe affinity can be modeled as a composition of affinities of 

single motifs  present in the sequence . Further, we assume that the contribution of 

individual motifs is additive. 

This gives for all probes  and all considered motifs a multiple linear 

model: 

, 

where denotes the number of occurrences of motif  in the sequence of probe  and 

 denotes individual affinity of motif . We estimate the motif affinities by minimizing the 

squared probe error  so that  correspond to the coefficients of the linear model. 

 

In order to estimate the bias and standard error of the estimated coefficients  we apply the 

delete-50% jackknife technique (Efron and Tibshirani 1994). We repeat the estimating 

procedure  times for randomly chosen subsets of 50% probe sequences and as a final affinity 

for a motif we choose the median of affinities estimated for the motif in different runs.  
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There is no reason to assume that the same motif model would provide the best description for 

different transcription factors. We therefore individually determined the best model for each 

PBM experiment. We tested k-mers of lengths from 4 to 7, with or without unifying sequences 

with their reverse complements. Additionally, for 4-mers and 6-mers we allowed a central gap of 

length from 1 to 6 nucleotides. Finally, we tested whether skipping of the nucleotides on the end 

of the probe influences the prediction performance. 

 

Discussion 

Using the PBM data of one array design (HK or ME) for training and the data for the other for 

evaluation, we were able to compare the results for different motif models. For 37 out of the 40 

experiments in the training set, continuous 6-mers were chosen as the best motif model. For the 

remaining 3 experiments, continuous 5-mers showed the best results. Interestingly, using k-

mers with a central gap did not provide better results for any of the TFs from the training set. 

The second parameter which influenced the prediction was the choice of how many nucleotides 

from the beginning of the probe sequence should be skipped. We observed that exclusion of 

one or two flanking nucleotides increases the number of correctly predicted top-100 probe 

sequences but slightly decreases overall Spearman (and Pearson) correlation of all probe 

sequences. Depending on which aspect is of the optimization interest this model setting could 

be changed. 

We have introduced a simple linear model for prediction of TF-DNA affinity which estimates 

binding affinities based on short motifs present in probe sequences. Finally, we have applied the 

continuous 6-mer motif model without skipping the first nucleotides of the probe sequences to 

all 40 PBMs from the training set.   
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Team_H:  High-resolution models of transcription factor-DNA 

affinities using discriminative learning 

 

Introduction 

PBM technology provides unprecedented high-resolution data on the subtle DNA sequence 

preferences of transcription factors (TFs).  To exploit this rich binding data, we developed more 

general models of TF binding preferences based on inexact matches of k-length subsequences 

(“k-mers”) rather than traditional position weight matrices (PWMs).  We used a supervised 

learning strategy to train these TF binding preference models directly on PBM probe-level data.  

Therefore, in our approach, each (probe sequence, probe intensity) pair is a labeled training 

example, and we train support vector regression (SVR) models to directly learn the mapping 

from probe sequence to the measured binding intensity.  We used a new k-mer based string 

kernel, called the di-mismatch kernel, for representing the similarity of double-stranded probe 

sequences on the PBM.  This kernel is based on weighted counts of k-mer features, allowing up 

to m mismatches in the alphabet of dinucleotides, which favors mismatches that occur 

consecutively and better models preferred TF binding patterns.  Full details on the kernel and 

SVR training procedure are described in (Agius, Arvey et al. 2010). 

 

Methods 

Data pre-processing 

Examination of PBM probe intensity distributions suggests that only a few hundred of the ~40K 

PBM sequences in the positive tail actually contain the binding signal, while most of the intensity 

distribution comes from low-level non-specific binding and instrument noise.  Therefore, we only 

used a few hundred high-intensity probe sequences as “positive” training data and a similar 

number of “negative” training sequences, rather than sampling from the full intensity distribution. 

More specifically, we ranked the normalized probe intensities and selected 500 sequences from 

the tail ends of the distribution as positive and negative training sequences.  

Our approach requires the selection of appropriate parameters k and m for k-mer length and 

dinucleotide mismatches, respectively, correlating roughly to the length and degeneracy of the 

preferred motifs for each TF.  In our previous work (Agius, Arvey et al. 2010), we used detection 

of the 100 highest-intensity probes within the top 100 scored probes as our measure of 

performance for model selection and for reporting results, reasoning that detection of the top 

probes was the most appropriate prediction task.  However, since the original DREAM contest 

used correlation-based measures over the whole intensity distribution for three out of five 

performance metrics, here instead we used Spearman correlation for model selection based on 

2-fold cross-validation on the training PBM arrays using k = 10,…,15 and m = 2….7.  We then 

submitted the best-performing SVR models to DREAM. 
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Description of the method 

In our approach, we directly learn the mapping from DNA probe sequences to intensity in PBM 

binding experiments by using support vector regression (SVR) together with a novel k-mer 

based string kernel called the di-mismatch kernel. For the kernel computation, each training 

sequence is decomposed into its constituent k-mers, and the weighted counts of k-mer features 

are computed based on matching in the dinucleotide alphabet, and allowing up to m 

dinucleotide mismatches in each feature count (Agius, Arvey et al. 2010). A normalized linear 

kernel is then computed on these features. 

Careful feature selection can eliminate noisy features and reduces computational costs, both in 

the training and testing of the model. In particular, retaining very infrequent k-mers may add 

noise, and discriminative k-mer features should display an enrichment in the bound probes. 

Therefore, we selected the feature set to be those k-mers that are overrepresented in the 

‘‘positive’’ probe class by computing the mean di-mismatch score for each k-mer in the “positive” 

class and the “negative” class and ranking features by the difference between these means.  

For this competition, we used the 4000 top-ranked k-mers without trying to optimize the number 

of retained features for each TF. 

 

Discussion 

Our training strategy was designed to learn models that accurately predict the high-affinity probe 

sequences, and in previous work we found that our k-mer based SVR models outperformed 

PWM-based approaches for detection of the top 100 probes within the top 100 predictions.  

Consistent with these published results, we were among the top three DREAM teams for the 

two ROC-based performance metrics, showing that our method is highly competitive for the task 

of discriminating high-affinity probes from “no-affinity” probes.   

However, since we do not train on the “middle” of the probe intensity distribution – 

corresponding, we believe, to non-specific or very low-affinity binding – our method does not 

capture the probe sequence biases that correlate with lower measured intensities.  Therefore, it 

is unsurprising that for the three correlation-based DREAM metrics, which evaluate correlation 

between real and predicted intensities over the whole probe intensity distribution, our DREAM 

performance was weaker.  Although we did use Spearman correlation as our metric for model 

selection in our submitted results, we subsequently found that using a fixed reasonable 

parameter choice (e.g. (k,m) = (13,5)) gave similar overall performance for all metrics. Since we 

noticed that the other two teams with good ROC performance also had good correlation 

performance, we wondered whether we could adjust our training procedure to improve our 

performance on correlation-based metrics while retaining our advantage for discriminating high-

affinity from no-affinity probes, for example by sampling probes from the full intensity distribution 

and adding these examples to the training data.  After some unsuccessful experiments in this 

direction, we concluded that the model was not well-suited to learning to predict the full intensity 
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distribution, potentially because (i) SVR models, which use epsilon-insensitive loss rather than 

squared error, may not be appropriate regressors for the full probe distributions; and/or (ii) our 

feature selection procedure captures enrichment in the tails rather than correlation with the full 

signal.  Potentially, a sparse square loss regression model based on a similar k-mer feature 

representation, such as lasso regression, might be more appropriate for this task.  Finally, we 

did not perform any normalization of the input data for this contest – we suspect that doing so 

would have resulted in increased performance. 
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Team_I: Prediction of TF-DNA interactions with Protein Binding 

Microarrays using Rank Optimization 

 

Introduction  

We describe a rank optimization-based method for modeling and predicting Protein Binding 

Microarray (PBM) probe intensities. 

 

Methods 

Data pre-processing 

First, we ignore all probes flagged as bad in each dataset by replacing entries corresponding to 

a flagged probe with NA. After that, for each array, we obtain the signal rank and the 

background rank of each probe by sorting their raw probe signal and background signal, 

respectively.  Then, we define the corrected signal rank of each probe as the signal rank minus 

the background rank, and average background rank as the mean of the background rank of the 

given probe among all the datasets. 

 

Description of the method 

We propose two models for predicting the corrected rank of each probe: the PWM model and 

the k-mer model.  For the PWM model, we apply the de novo motif finding tool Amadeus 

(Linhart, Halperin et al. 2008)  to predict the PWM motif; then, the probes are ranked according 

to the PWM scores.  During training, we obtain a positive probe set and a negative probe set: 

the positive probe set is defined as the set of probes with corrected signal rank higher than 

(mean+2*std), and the negative probe set is defined as a set of 400 probes randomly selected 

from the probes with corrected signal rank lower than (mean-2*std).  

20 de novo PWMs are produced as the output of Amadeus, providing us with 20 features 

representing the maximum PWM score (log likelihood) of each de novo PWM. We applied multi-

linear regression on these features to fit the corrected signal rank.  

For the k-mer model, we predict the rank of a probe based on the occurrences of k-mers.  Due 

to computational constraints, we only consider 6-mers.  For each 6-mer, the probes in the 

training set are partitioned into a positive set (containing the given 6-mer) and a negative set 

(not containing the given 6-mer). Then, we draw the ROC curve against the corrected signal 

rank of each probe and the AUC score of the given 6-mer is the area under that ROC curve. 

After we compute the AUC score for each 6-mer from the training set, the k-mer score of each 

testing probe is defined as the max AUC score among all 6-mers inside that probe.  Similarly, 

linear regression is applied to transform the k-mer score to a corrected signal rank. 

http://wizfolio.com/?citation=1&ver=3&ItemID=307&UserID=9429&AccessCode=0&CitationSuffix=
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To combine the PWM model and the k-mer model, we fit the corrected rank with the PWM 

predicting rank and the k-mer predicted rank using linear regression again in the training set. 

The final predicted signal rank of each probe in the testing set is the sum of the predicted 

corrected rank and the average background rank of the probe.   

Since the final evaluation of the DREAM5 challenge also considered the raw signal value 

correlation (Pearson correlation), we fit the predicted signal rank to raw signal values using 3-

order polynomial regression on the raw signal value of the training data.   

 

Discussion 

Our team performance performed best among all methods in the Spearman correlation criterion, 

which was the main target of our algorithm; however the average rank when considering all 

evaluation criteria was only 6. Specially, the measurements based on 8-mer AUPR and AUROC 

were very bad for our predictions (10th and 9th). The exact reason for this is still unknown and it 

is quite surprising to see that we can attain such good results for the probe rank but bad results 

for the 8-mer rank.  Our preliminary analysis suggest that the probe signal is highly correlated 

with the background signal, as we obtained an average 0.8 spearman rank correlation between 

the probe signal and background signal. The reason for this, we conjectured, is because the 

background contamination is so serious that nearly all probes with the motif have high 

background, and we guessed that some TFs might be left behind after washing the PBM if the 

PBM was reused.   
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Team_J: Thermodynamic models with dinucleotide contributions to 

binding energy inferred by maximizing mutual information 

 

Introduction  

We used a modified version of the information-theoretic inference technique described in 

(Kinney, Tkačik et al. 2007) and (Kinney, Murugan et al. 2010) to infer models for the sequence-

dependent binding energies of the 86 assayed mouse transcription factors (TFs). Unlike most 

motif finding algorithms, this method allows models of arbitrary functional form to be fit to PBM 

data. Applying this capability to the 20 TFs for which two arrays were available, we found that 

models containing nearest-neighbor dinucleotide contributions to binding energy greatly 

outperformed models with only single nucleotide contributions. We also found that models 

predicting the total thermodynamic occupancy at all possible binding sites on each probe greatly 

outperformed models for which only the strongest binding site on each probe is considered. The 

latter improvement is achieved with only one additional parameter per TF, the determination of 

which puts predicted binding energies in physical units (i.e. kcal/mol or kbT ). For the results 

reported here, we also fit a heuristic model for the significant sequence-dependent bias 

observed in the provided PBM data. We have since found that using a direct estimate of bias 

substantially improves the predictive performance of our inferred models.  

 

Methods 

Data pre-processing 

We used 'signal median' fluorescence minus 'background median' fluorescence as the 

measured fluorescence of each probe. We then binned these fluorescence values into 10 bins 

respectively containing 1.0%, 1.5%, 2.2%, 3.2%, 4.7%, 7%, 10%, 15%, 22%, and 32% of the 

probes (from most to least fluorescent); alternative binning schemes made little difference in our 

results. In what follows, we use the notation  ( )  to denote the bin assigned to probe   in the 

experiment on TF  . This bin   serves as the probe's "measurement" in the model fitting 

procedure described below.  

 

Binding model structure 

The models we fit consisted of three parts: a function  ()  that predicts the binding energy of 

TF   to a DNA binding site  , a function x ( )
 that converts the binding energies of every 

possible site   in probe   to a predicted TF occupancy on that probe, and a function ( )  that 

predicts the sequence-dependent bias in this probe's fluorescence.  
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We used linear models with nearest-neighbor dinucleotide contributions to predict the 

sequence-dependent binding energies of all TFs. Explicitly we used  

 ()  E i(i )



i 1

L

  J i(i )(i 1)



i 1

L1

 , 

which is defined by mononucleotide parameters E ib

  and dinucleotide parameters J iab

 . Here L  

is the length of the binding site, a,b {A,C,G,T } , and (i )  denotes the base at position i within 

site  . We also fit mononucleotide models for comparison, i.e. ones for which all J iab

  0 . 

The predicted occupancy of TF   on probe   was computed using the sum of Boltzmann 

weights for each binding site: 

x ( )  exp[ ()]


  

where   runs over all sites of length L on both strands of the probe  . Note that this functional 

form assumes the energies  are in units of kbT . For comparison, we also fit models where 

occupancy at only the strongest (lowest energy) binding site was included in the sum.  

 

Modeling sequence-dependent bias 

The PBM data provided showed strong sequence-dependent bias in fluorescence signals; 

across the different TFs, the mean correlation between the AT content of microarray probes and 

their measured fluorescences was 0.3. We attempted to model this bias — assumed to be 

probe-dependent but not TF-dependent — with a function ( )  (one function   for HK arrays 

and one for ME arrays) described by a dinucleotide matrix covering the 35 bp variable region of 

each probe: 

( )  i (i )

o

i 1

35

  i (i ) (i 1)

1

i 1

34

 . 

 

Maximizing predictive information 

In what follows, we use ‘predictive information’ to mean the mutual information between 

fluorescence measurements and the corresponding predictions of a model (assessed over all 

microarray probes). In the case at hand, our models make two predictions for each probe  : 

the transcription factor occupancy x ( )  and the probe-specific bias ( ) . The mutual 

information between these predictions and the measurements  ( )  is written as I(x ,; ) .  
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Following (Kinney, Tkačik et al. 2007) and (Kinney, Murugan et al. 2010), we sought values for 

the parameters {E ib

 , J iab

 , ib

0 , iab

1 } that maximize the objective function, 

. 

Here N  is the number of probes measured for transcription factor  . Noting the identities, 

, 

we used an iterative algorithm to alternately maximize the first term in each of these two 

expansions. Letting 

k  and 

k
 respectively represent the parameters of the functions x  and 

  at iteration k , the algorithm we used is 


0  argmax



I(; )


  

For k =0, 1, 2, ... 

 ,  
k  argmax



I(x; |k ) 


k 1  argmax



N



 I(; | x

k )  

This algorithm is readily seen to either increase  or leave it unchanged at each step k . We 

ran this algorithm through 5 iterations, at each step using Replica Exchange Markov Chain 

Monte Carlo to separately optimize 

k
 and each 

k . The binding site length L  for each protein 

was varied from 4 to 16 and the most informative length was chosen. This analysis required a 

total computational time of about 40,000 CPU hours distributed across about 150 nodes.   

 

Final predictions 

To make fluorescence predictions  for each probe s  in the 66 held-out arrays, we 

combined the protein occupancy prediction  and the bias prediction  (inferred from 

the provided data) according to the heuristic formula 

. 

The five parameters A1

 ,,A5

  — different for each TF   — were determined by least squares 

regression on the provided PBM data.  
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Discussion  

We tested the general importance of dinucleotide contributions to binding energy and of 

occupancy at multiple sites per probe. Models of the 20 training set TFs were fit to each of the 

two arrays (HK or ME) and the predictive information of the resulting models was evaluated on 

the other array; in most cases, the performance of HK-trained models on ME arrays very closely 

tracked the performance of ME-trained models on HK arrays.  

Including nearest-neighbor dinucleotide contributions to binding energy increased the predictive 

information of models by 50% on average, with 9 out of the 20 training data TFs showing 

increases of 50-100%. We view this as strong evidence that multinucleotide contributions to 

binding energy are important for describing the sequence specificities of many mouse TFs. 

Secondly, using the sum of binding probabilities for all sites on a microarray probe, rather than 

for a single most favored site, increases the predictive information of the models by 17% on 

average, with increases of 20-40% for 8 out of the 20 training data TFs. Note that this 

improvement comes at the cost of only one additional parameter per TF: the energy scale. 

The inferred binding energy models for the 20 training set TFs show reasonable agreement 

between the HK and ME data sets: 16 out of these 20 TFs exhibit a correlation coefficient 

between inferred parameters of 0.4-0.8 with a mean of 0.6. Inference for the other four TFs 

(Sp1, JunB, Sox14, Foxp2) did not appear to have been successful.  

We have identified two factors that negatively affected our predictions for the DREAM 

competition. We now believe it is best to estimate the probe-specific bias   directly from data, 

e.g. using the median fluorescence of a given probe across all assayed TFs. This obviates the 

need for the iterative algorithm described above. Furthermore, the use of least squares 

regression for fitting the 5 TF-specific parameters A1

 ,,A5

  is not the same as maximizing the 

correlation between these predictions and the measurements. We believe we should have 

maximized correlation because this, and not the sum of square deviations, was used to judge 

predictions. 
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Team_K: Predicting TF-DNA binding specificity with Protein Binding 

Microarrays using linear regression and feature selection 

 

Introduction 

Modeling TF-DNA interactions is an important problem in understanding transcriptional 

regulation. The basic idea of our method is to use a set of short DNA words (k-mers) as 

features, and apply linear regression to predict the TF-DNA binding intensities: 

pj = ∑i ci sij + c0 + εj, 

where pj is the log-transformed binding intensity of the j-th probe sequence, ci is the regression 

coefficient for the i-th feature (k-mer) and sij is the matching score between the i-th feature and 

the j-th probe sequence. A similar method has been used to predict cis-regulatory elements 

from gene expression data (Bussemaker, Li et al. 2001). Initially we pooled all k-mers with k 

ranging from 1 to 8. As the number of k-mers is large, we used feature selection to obtain a 

small subset of the k-mers that contribute the most to the binding specificity, in order to both 

save computational cost and improve generalizability of the model. 

 

Methods 

The matching score between a k-mer a and a probe sequence of length L, p, is defined as the 

sum of squares of the number of matched characters between a and every length-k 

subsequence of p.  

S(a, p) = ∑j (∑iδ(ai, pj+i))
2, 

where ai and pi is the i-th character of a and p, respectively, while δ(x, y) = 1 if x = y and 0 

otherwise. This scoring method allows an inexact match between a k-mer and a probe 

sequence to be scored, and therefore takes into account degenerate binding sites. On the other 

hand, it gives relatively higher weights to perfect matches than to imperfect matches, thus 

preventing multiple inexact matches from overweighting an exact match.  

In order to find the most relevant k-mers for predicting TF-DNA specificity, we ranked all k-mers 

by two methods and further conducted feature selection based on the ranks. First, for each k-

mer, we identified the probe sequences that contain at least one exact match to the k-mer. We 

then took the median intensity of these probe sequences as an estimation of the binding affinity 

of the k-mer, and ranked all k-mers using this affinity. We call this affinity-based feature ranking. 

Second, for each k-mer, we computed the Spearman correlation coefficient between its 

matching scores to the probe sequences and the binding intensities of the probes. We ranked 

the k-mers by the absolute values of the correlation coefficients, with the assumption that both 

the positively correlated and negatively correlated k-mers may contribute to predicting TF-DNA 

specificity. We call this correlation-based feature ranking.  
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To perform feature selection, we first combined the top 16 features (k-mers) from the 

correlation-based ranking, and the top 16 features from the affinity-based ranking, to obtain up 

to 32 core features. We then performed a linear regression using the core features, and 

calculated the Spearman rank correlation between the predicted signal values and the true 

signal values as the baseline prediction accuracy. The top 1024-16 = 1008 features from each 

of the two ranking methods were combined as candidate features to give approximately 2000 

candidate features. Each candidate feature was used in turn with the core features to perform a 

linear regression and the prediction accuracy was calculated as above. The candidate features 

were ranked by the improvement of prediction accuracy compared to the baseline accuracy. 

The top 256 features were selected as the final set of candidate features, from which we further 

performed a stepwise forward feature selection (Keleş, van der Laan et al. 2002). Basically, 

starting from the 32 core features, at each step we try to select and add one feature that can 

result in the largest improvement of prediction accuracy when it is added in the regression. This 

procedure is repeated until no improvement can be obtained or all features in the final candidate 

pool have been used.  Finally, a linear regression is performed using the final set of selected 

features (typically less than 200), and the learned linear function is applied to predict the signal 

intensities for the test probes. 

 

Discussion 

Our method performed reasonably well when compared to the other methods participating in the 

challenge. Among 14 teams, the overall ranking of our method is #11. Two interesting 

observations are worth mentioning. First, with the probe-level evaluation, our method works 

better under the Spearman rank correlation-based metric than under the Pearson correlation-

based correlation (0.53 vs. 0.46). This can be explained by the fact that our method has used 

Spearman rank correlation as an internal accuracy measurement to guide feature ranking and 

feature selection; therefore, our method is probably slightly “over-tuned” towards the Spearman 

correlation-based evaluation metric. Second, the prediction accuracy of our method measured 

by the probe evaluation metric is significantly higher than that measured by the 8-mer evaluation 

metric. With the probe-level evaluation, the accuracy of our method is comparable to the median 

accuracy achieved by the teams (0.46 vs. 0.52, Pearson correlation, and 0.53 vs 0.55, 

Spearman correlation). In contrast, with the 8-mer-level evaluation, our method is apparently an 

outlier when compared to the other teams (0.16 ours vs. 0.52 median accuracy, AUPR). We 

hypothesized that 8-mers may have played a relatively less important role in our prediction 

model. To further investigate this, we examined the final set of features selected by our method 

for each TF. Indeed, we found that only 31.6% of selected features are 8-mers, significantly 

lower than the frequency (75%) that would be expected if the k-mers were randomly chosen. In 

contrast, 7-mers are significantly enriched in selected features (44.6% observed vs. 18.8% 

expected). Surprisingly, the feature set is mostly enriched with 3-mers and 4-mers (5.8 and 5.7-

fold enrichment, respectively), which may represent half binding sites separated by gaps of 

variable lengths.  
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III. Detailed description of FeatureREDUCE 

 

Introduction 

FeatureREDUCE builds on the biophysical modeling framework of the MatrixREDUCE algorithm 

(Foat, Houshmandi et al. 2005; Foat, Morozov et al. 2006; Foat, Tepper et al. 2008). In 

MatrixREDUCE, the DNA sequence specificity of a given transcription factor is represented as a 

position-specific affinity matrix (PSAM; (Bussemaker, Foat et al. 2007)), which is directly related 

to the differences in binding free energy associated with point mutations in the DNA sequence. 

Under the assumption of independence between nucleotide positions, the PSAM coefficients 

are directly inferred from a set of high-throughput measurements (mRNA expression, ChIP fold-

enrichment, PBM intensity, etc) and their associated cis-regulatory sequences, which can be 

much longer than the length of a single binding site. In the biophysical model underlying 

MatrixREDUCE, the affinities of all possible binding sites within the longer sequence are added 

up, under the assumption that saturation of binding is weak to moderate. 

FeatureREDUCE extends MatrixREDUCE in three distinct ways. First, it uses a more refined 

representation of binding specificity, in which dependencies between nucleotides are detected 

and modeled explicitly using additional free energy parameters. The resulting FSAM (feature-

specific affinity model) can be used to predict the relative binding affinity for any oligomer of a 

specified length. Second, FeatureREDUCE accounts for certain biases that are specific to the 

PBM technology. Finally, it employs robust regression techniques, which prevents over-fitting 

and allows for improved estimation of biophysical parameters. 

 

Methods 

FeatureREDUCE employs a biophysical model in a robust regression framework to produce 

different types of models from an individual PBM experiment: 

The PSAM (Position-Specific Affinity Matrix) 

PSAMs are at the core of biophysical positional-independence model used in MatrixREDUCE. 

They assume that each nucleotide position within the footprint contributes independently to the 

binding strength, in which relative affinity parameters for individual nucleotide positions are 

multiplied to obtain the overall affinity. Thus, a PSAM is a numerical matrix of nucleotide 

affinities with one row for each nucleotide and one column for each position in the binding site, 

and the affinities are normalized so that at each nucleotide position, the optimal base has an 

affinity coefficient of 1.  

The FSAM  (Feature-Specific Affinity Model) 

FSAMs are based on a biophysical model similar to that of MatrixREDUCE and BEEML-PBM.  

However, FeatureREDUCE extends the positional-independence PSAM model to include 
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possible higher-order “sequence features” (e.g. dinucleotide or trinucleotide dependencies) 

within a robust regression framework that resists over-fitting to the PBM data.  For example, 

FeatureREDUCE can account for all adjacent nucleotide dependencies simultaneously by fitting 

a robust multivariate model in which a multiplicative correction parameter is estimated for each 

dinucleotide feature. With this inference framework, the FeatureREDUCE model pinpoints 

exactly where in the binding site the positional-independence assumption breaks down, with the 

corresponding energetic corrections.  

The Positional Bias Profile  

FeatureREDUCE can also infer a “Positional Bias Profile” that normalizes for occupancy biases 

along the full length of the PBM probes. Steric hindrance by the “carpet” of neighboring DNA 

molecules immobilized at each PBM spot can cause the affinity-contribution of a TF binding site 

to depend on its location within the PBM probe. To quantify this effect, we introduce an 

independent weighting factor for each offset of the TF footprint relative to the end of the probe. 

These spatial coefficients for each strand are estimated using a multivariate fit to the PBM 

intensities, which is alternated with re-estimation of the PSAM parameters, until convergence. 

The magnitude of the contribution to the PBM intensity of a given binding site can vary by an 

order of magnitude depending on its position within the probe. Our positional-bias profiles are 

robust and provide a good metric to judge the quality of the experimental data.  

FeatureREDUCE also has the ability to detect a symmetric motif (common when the TF-protein 

binds as a homodimer) and then generates a more accurate and robust symmetric model (with 

about half as many parameters). 

The All-Kmer Model 

The All-Kmer model is similar in concept to the model by Annala et al., but with some notable 

improvements. We use a robust regression framework that resists over-fitting, and also take into 

account that not all K-mers are well represented on the HK and ME microarray designs. We 

have observed (T.R. Riley and H.J. Bussemaker, unpublished) that compared to FSAM-only 

models, FeatureREDUCE models that include All-Kmer terms have a significantly reduced 

correlation both with dissociation constants (Kd’s) measured using MITOMI (Maerkl and Quake 

2007) and with ChIP-seq occupancy (Zhou and O'Shea 2011).  We therefore believe that the 

All-Kmer models are partly fitting PBM artifacts. 
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Supplementary Tables 
 
 
Supplementary Table 1.  Information on transcription factors and associated experiments 
(see excel spreadsheet “STab01_TFsUsedInThisStudy.xlsx”) 

 

Team1 
Model 
type2 

Final 
Rank3 Pearson4 

Pearson 
(Log)5 

Spear-
man6 

AUROC 
8mer7 

AUPR 
8mer8 

Team_D k-mer 1 (2) 0.641 (1) 0.674 (2) 0.639 (4) 0.994 (2) 0.700 (1) 

Team_F Other 2 (3.8) 0.610 (4) 0.673 (3) 0.655 (3) 0.976 (4) 0.545 (5) 

Team_E PWM 3 (4) 0.637 (2) 0.694 (1) 0.673 (2) 0.952 (7) 0.522 (8) 

Team_G k-mer 4 (4.4) 0.573 (6) 0.621 (6) 0.574 (6) 0.994 (1) 0.674 (3) 

Team_J Other 5 (5) 0.612 (3) 0.650 (4) 0.623 (5) 0.965 (6) 0.524 (7) 

Team_I Other 6 (6) 0.581 (5) 0.647 (5) 0.692 (1) 0.940 (9) 0.306 (10) 

Team_C Other 7 (7.8) 0.518 (8) 0.523 (10) 0.484 (10) 0.975 (5) 0.530 (6) 

Team_H Other 7 (7.8) 0.469 (10) 0.417 (12) 0.367 (12) 0.991 (3) 0.676 (2) 

Team_9 Other 9 (8.4) 0.497 (9) 0.575 (7) 0.562 (7) 0.941 (8) 0.248 (11) 

Team_A k-mer 10 (9) 0.533 (7) 0.461 (11) 0.431 (11) 0.925 (12) 0.584 (4) 

Team_K k-mer 11 (10.2) 0.461 (11) 0.540 (9) 0.531 (9) 0.930 (10) 0.156 (12) 

Team_12 k-mer 12 (10.4) 0.461 (12) 0.544 (8) 0.538 (8) 0.929 (11) 0.150 (13) 

Team_B PWM 13 (12.2) 0.267 (13) 0.189 (13) 0.100 (13) 0.891 (13) 0.462 (9) 

Team_14 PWM 14 (14) 0.000 (14) 0.000 (14) 0.000 (14) 0.487 (14) 0.003 (14) 

Supplementary Table 2.  Results of the original DREAM5 challenge. 

1 ID of contest participant 
2 Type of model employed by method 
3 Final rank of team.  Mean rank across five scoring schemes is indicated in parentheses. 
4 Pearson correlation between predicted probe intensities and actual intensities (average 
across all 66 experiments).  Rank indicated in parentheses. 
5 Pearson correlation between the log of the predicted probe intensities and the log of the 
actual intensities (average across all 66 experiments).  Rank indicated in parentheses. 
6 Spearman rank correlation between predicted probe intensities and actual intensities 
(average across all 66 experiments).  Rank indicated in parentheses. 
7 Area under the receiver operating characteristic curve (AUROC) of high-scoring 8-mers.   
8 Area under the precision-recall curve (AUPR)  of  high-scoring 8-mers.   

 

 
Supplementary Table 3. Full evaluations for all algorithms, by TF 
(see excel spreadsheet “STab03_FullEvaluationResultsByTF.xlsx”) 
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Feature-
REDUCE   

BEEML
-PBM   

TF ID 
TF Name 

(DBD) 
dinuc

1 PWM2 
Im-

prove3 dinuc1 PWM2 
Im-

prove3 
Homodimer-

ization?4 

TF_66 
Zscan10 

(C2H2 ZF) 0.609 0.458 0.151 0.693 0.674 0.019 
Direct 

(22735705) 

TF_46 
Nhlh2 

(bHLH) 0.695 0.576 0.119 0.620 0.525 0.095 
Direct 

(18356286) 

TF_47 
Nkx2-9 

(Homeo) 0.989 0.886 0.103 0.968 0.961 0.007 None 

TF_61 
Zfp637 

(C2H2 ZF) 0.878 0.781 0.097 0.744 0.632 0.112 None 

TF_63 
Zkscan5 

(C2H2 ZF) 0.664 0.575 0.089 0.384 0.301 0.083 None 

TF_44 
Gata4 

(GATA) 0.818 0.730 0.088 0.980 0.969 0.011 Family-based 

TF_58 
Tbx1  

(T-box) 0.762 0.686 0.076 0.672 0.673 -0.001 None 

TF_27 
Xbp1 

 (bZIP) 0.910 0.840 0.070 0.998 0.927 0.071 
Direct 

(17765680) 

TF_38 
Dmrtc2 
(DM) 0.935 0.865 0.070 0.817 0.837 -0.020 Family-based 

TF_36 
Atf4  

(bZIP) 0.796 0.731 0.065 0.602 0.571 0.031 
Direct 

(1827203) 

TF_32 
Zkscan1 

(C2H2 ZF) 0.844 0.779 0.065 0.849 0.476 0.373 None 

TF_60 
Zfp300 

(C2H2 ZF) 0.770 0.709 0.061 0.592 0.479 0.113 None 

TF_12 
Nr4a2  
(NR) 0.917 0.867 0.050 0.963 0.938 0.025 

Direct 
(21316423) 

TF_35 
Atf3  

(bZIP) 0.817 0.770 0.047 0.864 0.853 0.011 
Direct 

(8622660) 

TF_10 
Nfil3  

(bZIP) 0.885 0.839 0.046 0.909 0.903 0.006 
Direct 

(16725346) 

TF_49 
Nr2f1  
(NR) 0.984 0.940 0.044 0.932 0.919 0.013 

Direct 
(10624948) 

TF_30 
Zfp3  

(C2H2 ZF) 0.606 0.564 0.042 0.718 0.722 -0.004 
Direct 

(9155026) 

TF_21 
Srebf1 
(bHLH) 0.936 0.898 0.038 0.988 0.951 0.037 

Direct 
(15550381) 

TF_65 
Zscan10 

(C2H2 ZF) 0.813 0.776 0.037 0.978 0.982 -0.004 
Direct 

(16767105) 

TF_18 
Sox10  
(Sox) 0.961 0.925 0.036 0.914 0.919 -0.005 

Direct 
(10931919) 

TF_57 
Sp140 

(SAND) 0.844 0.810 0.034 0.756 0.758 -0.002 None 

TF_50 
Nr5a2 
(NR) 0.941 0.908 0.033 0.957 0.957 0.000 Family-based 

TF_37 
Dnajc21 

(C2H2 ZF) 0.838 0.808 0.030 0.818 0.798 0.020 None 
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TF_62 
Zic5  

(C2H2 ZF) 0.813 0.783 0.030 0.992 0.976 0.016 None 

TF_48 
Nr2e1  
(NR) 0.991 0.963 0.028 0.910 0.908 0.002 

Direct 
(8047143) 

TF_3 
Foxo6 

(Frkhead) 0.975 0.949 0.026 0.957 0.947 0.010 None 

TF_28 
Zfp202 

(C2H2 ZF) 0.901 0.876 0.025 0.999 0.980 0.019 None 

TF_39 
Egr3  

(C2H2 ZF) 0.902 0.878 0.024 0.960 0.960 0.000 None 

TF_55 
Sdccag8  
(AT hook) 0.991 0.968 0.023 0.950 0.944 0.006 None 

TF_34 
Ahctf1  

(AT hook) 0.927 0.906 0.021 0.803 0.806 -0.003 None 

TF_53 
Rfx7  

(RFX) 0.941 0.920 0.021 0.999 0.950 0.049 None 

TF_41 
Esrrg  
(NR) 0.997 0.977 0.020 0.963 0.941 0.022 

Direct 
(12180985) 

TF_19 
Sox3  
(Sox) 0.916 0.896 0.020 0.886 0.878 0.008 None 

TF_29 
Zfp263 

(C2H2 ZF) 0.925 0.908 0.017 0.978 0.959 0.019 None 

TF_7 
Mlx  

(bHLH) 0.996 0.979 0.017 0.932 0.926 0.006 
Direct 

(11230181) 

TF_56 
Snai1  

(C2H2 ZF) 0.981 0.966 0.015 0.956 0.948 0.008 None 

TF_16 
Prdm11 
(Myb) 0.995 0.980 0.015 0.956 0.952 0.004 None 

TF_59 
Zbtb1  

(C2H2 ZF) 0.982 0.967 0.015 0.978 0.976 0.002 None 

TF_54 
Rora  
(NR) 0.967 0.952 0.015 0.970 0.978 -0.008 

Direct 
(7935491) 

TF_51 

Pou1f1 
(Pou+ 

Homeo) 0.925 0.911 0.014 0.947 0.932 0.015 
Direct 

(10026784) 

TF_43 
Foxg1 

(Frkhead) 0.930 0.916 0.014 0.870 0.860 0.010 None 

TF_6 
Klf9  

(C2H2 ZF) 0.851 0.837 0.014 0.952 0.954 -0.002 None 

TF_22 
Tbx2  

(T-box) 0.991 0.978 0.013 0.997 0.978 0.019 
Direct 

(14996726) 

TF_14 
P42pop 
(Myb) 0.982 0.969 0.013 0.998 0.997 0.001 None 

TF_5 
Klf8  

(C2H2 ZF) 0.963 0.950 0.013 0.997 0.997 0.000 None 

TF_33 
Zscan10 

(C2H2 ZF) 0.874 0.862 0.012 0.965 0.975 -0.010 
Direct 

(22735705) 

TF_1 
Ar  

(NR) 0.905 0.894 0.011 0.949 0.934 0.015 
Direct 

(15994236) 

TF_52 Rarg  0.994 0.983 0.011 0.949 0.943 0.006 Direct 
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(NR) (22355136) 

TF_13 
Oct1  
(Pou) 0.871 0.861 0.010 0.948 0.926 0.022 

Direct 
(11583619) 

TF_42 
Foxc2 

(Frkhead) 0.952 0.942 0.010 0.965 0.965 0.000 None 

TF_8 
Mzf1  

(C2H2 ZF) 0.992 0.982 0.010 0.946 0.950 -0.004 
Direct 

(16950398) 

TF_2 
Dbp  

(bZIP) 0.930 0.921 0.009 0.963 0.957 0.006 
Direct 

(10073576) 

TF_9 
Mzf1  

(C2H2 ZF) 0.914 0.905 0.009 0.947 0.962 -0.015 
Direct 

(16950398) 

TF_24 
Tbx4  

(T-box) 0.866 0.858 0.008 0.979 0.974 0.005 
Direct 

(20975709) 

TF_40 
Esrrb  
(NR) 0.833 0.827 0.006 0.820 0.773 0.047 

Direct 
(12654265) 

TF_4 
Klf12  

(C2H2 ZF) 0.847 0.841 0.006 0.997 0.998 -0.001 None 

TF_11 
Nr2f6  
(NR) 0.994 0.989 0.005 0.971 0.969 0.002 

Direct 
(15741322) 

TF_20 
Sox6  
(Sox) 0.982 0.977 0.005 0.790 0.794 -0.004 

Direct 
(16133682) 

TF_23 
Tbx20  
(T-box) 0.970 0.966 0.004 0.935 0.935 0.000 None 

TF_15 

Pit1  
(Pou+ 

Homeo) 0.951 0.947 0.004 0.910 0.912 -0.002 
Direct 

(9009203) 

TF_25 
Tbx5  

(T-box) 0.928 0.925 0.003 0.957 0.945 0.012 
Direct 

(1007761) 

TF_45 
Mybl2 
(Myb) 0.995 0.992 0.003 0.974 0.971 0.003 None 

TF_64 
Znf740 

(C2H2 ZF) 0.994 0.991 0.003 0.961 0.962 -0.001 None 

TF_26 
Tfec  

(bHLH) 0.944 0.944 0.000 0.994 0.985 0.009 
Direct 

(8336698) 

TF_17 
Rorb  
(NR) 0.973 0.978 -0.005 0.961 0.963 -0.002 

Direct 
(11689423) 

TF_31 
Zfx  

(C2H2 ZF) 0.959 0.970 -0.011 0.987 0.988 -0.001 None 

Supplementary Table 4. Improvement of dinucleotide model over PWMs, for each TF 
1 Final score for the indicated algorithm, using its dinucleotide model 
2 Final score for the indicated algorithm, using its PWM model 
3 Difference between the two scores (improvement achieved using the dinucleotide model).   
4 Is there evidence that the TF interacts with DNA as a homodimer?  'Direct' evidence 
indicates TFs with experimental data indicating that it binds as a homodimer.  "Family-based" 
indicates that the TF's family contains a substantial amount of TFs that bind DNA as a 
homodimer. 
Improvements of greater than 0.015 are indicated in bold.  Rows are sorted by 
FeatureREDUCE improvement. 
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Dataset Algorithm 
Probes 

11 
Probes 

22 
Probes 

1+23 
8mers 

14 
8mers 

2 
8mers 

1+2 

DREAM BEEML-PBM 0.540 0.480 0.533 0.701 0.621 0.727 

DREAM FeatureREDUCE 0.504 0.338 0.491 0.641 0.390 0.654 

Badis09 BEEML-PBM 0.573 0.485 0.556 0.742 0.619 0.760 

Badis09 FeatureREDUCE 0.543 0.371 0.530 0.723 0.433 0.730 

Supplementary Table 5. Summary of evaluation of secondary motifs, compared to only 
using primary PWMs. 
1 Correlation between primary motif probe intensity predictions and test probe intensities 
(mean across all TFs) 
2 Correlation between secondary motif probe intensity predictions and test probe intensities  
(mean across all TFs) 
3 Correlation between combined primary and secondary motif probe intensity predictions and 
test probe intensities  (mean across all TFs) 
4 Same as for probe columns, but  first converting the probe intensities to median 8-mer 
intensities (for both the predictions and the test arrays),  and then calculating the correlations 
(see Methods) 

 

 

Supplementary Table 6. Improvement of secondary over primary motifs, for each TF 

(see excel spreadsheet “STab06_SecondaryMotifsByTF.xlsx”) 

 
 
Supplementary Table 7.  Full Comparison to ChIP-seq and ChIP-exo data 
(see excel spreadsheet “STab07_FullComparisonToInVivoData.xlsx”) 

 

Supplementary Table 8.  Information on plasmids used for PBMs in this study 

(see excel spreadsheet “STab08_PlasmidInfo.xlsx”) 

 
 

 



Supplementary Figure 1.  The effect of using different combinations 
of evaluation schemes on the final scores of the algorithms. 
Final score of each algorithm, using all possible combinations of the four 
evaluation schemes.  Final combination used is indicated by the yellow 
arrow.  Abbreviations: C(p), probe correlation; C(8), 8-mer correlation; 
A(p), probe AUROC; A(8), 8-mer AUROC. 
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Supplementary Figure 2. Correlation of algorithm predictions 
Heatmap depicting the overall similarity of the probe intensities produced 
by each pair of algorithms.  Prediction similarity was calculated as the 
average across all 66 experiments of the pearson correlation between the 
probe intensity predictions of each algorithm pair.  The tree at the bottom 
indicates the results of hierarchical clustering using average linkage 
clustering agglomeration. 
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Supplementary Figure 3. Comparison of dinucleotide and secondary 
motif improvement 
Improvement achieved for each TF for BEEML-PBM (BEEML) and 
FeatureREDUCE (FR), for dinucleotides (a though c) and secondary motifs 
(d through f).  For dinucleotides, scores are based on the final evaluation 
score.  For secondary motifs, scores are based on the Pearson correlation 
of 8-mer predictions (see Methods).  a. Improvement of dinucleotides over 
a single PWM, for  FR (x axis)  and BEEML (y axis), for each TF.  The six 
TFs with substantial improvement for both FR and BEEML are indicated.  b. 
Performance of FR single PWM predictions (x axis) vs the improvement of 
FR dinucleotide predictions over predictions from a single FR PWM (y axis).  
c. Same as (b), but for BEEML.  d-f. Same as a-c, but for secondary motifs. 
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Supplementary Figure 4. PWM sequence logo comparisons (cont’d 
on subsequent pages) 
Visual display of PWMs produced by each algorithm for each TF.  A red ‘X’ 
indicates that the given algorithm did not produce a PWM for the given TF.  
Algorithm key is displayed at the top.  Abbreviations: BML, BEEML-PBM; 
TM_E, Team_E; FR, FeatureREDUCE; MR, MatrixREDUCE; RM, 
RankMotif; SnW, Seed-and-Wobble; PA_E, PWM_align_E; PA, 
PWM_align. 
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Supplementary Figure 4. PWM sequence logo comparisons (cont’d)  
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Supplementary Figure 4. PWM sequence logo comparisons (cont’d)  
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